Partial Differential Equations (TATA27)
Spring Semester 2017
Homework 4

4.1 Let © be an open set with C" boundary. For A > 0, define the energy of each continuously
differentiable v: 2 — R to be

1

E\v] = B /Q(|Vv(x)|2 + Mo(x)[?)dx.

Show that a function u € C?(Q) which satisfies Au — Au = 0 in  is such that
Ex[u] < Ex[v]

for all v € C1(Q2) such that v(x) = u(x) for all x € 9.

Observe that the energy F)[v] makes sense for functions in C'(Q), but (assuming a solution
to the corresponding boundary value problem exists) a minimiser can sometimes be found in
a better class. For example, if A = 0, Lemma 5.5 tells us any solution w is smooth in 2.

4.2 Let Q be an open set with C' boundary and h: 9Q — R a C! function. Define the energy of
each continuously differentiable v: Q2 — R to be

Enl] = %/Q|VU(X)\2(1X—/89 h(x)o(x)dor(x).

Show that a function u € C?(Q) which satisfies the boundary value problem

Au=0 in €, and
g—z::n~Vu:h on 0f)
is such that
Eh[u] < Ey [1}]

for all v € C1(Q2). Here n is the outward unit normal to 9.

Here, in contrast to question 4.1, the boundary condition Ju/0n = h is incorporated into the
energy and we see that a solution u is a minimum of Ej, over all v € C*(Q) regardless of how
v behaves at the boundary.

4.3 The aim of this question is to prove Theorem 5.12. Let Q be an open bounded set with C?
boundary.

(a) In this part of the question we will prove that the Green’s function for the Laplacian in
) is unique. Suppose we have two Green’s functions G; and G, for the Laplacian in (2.

i. For each fixed x € €, prove that y +— G'1(x,y) — G2(x,y) has a continuous extension
which belongs to C?(Q2) and is harmonic in Q.

ii. By considering a boundary value problem that y — G1(x,y) — G2(x,y) solves, prove
that G1 = GQ.

(b) We now wish to prove the Green’s function is symmetric, that is G(x,y) = G(y,x) for
all x,y € Q.

i. Fix x,y € Q with x # y and consider the functions z — u(z) := G(x,z) and
z — v(z) := G(y,z). Apply Green’s second identity (5.10) to v and v in the domain
Q, :=Q\ (Br(x) U B,(y)) for r > 0 so small that (B,(x) U B,(y)) C Q and B,(x)N
B.(y) = 0 to obtain that

= /837.(X) Glx.2) on (z) — G(y, =) on (z)do(z) .
i /6Br()') Glx.2) on (z) - Gy, 2) on (z)do(z)



ii. Using the definition of the Green’s function, prove that

[ (Gxn = aa—x) 29 o) - 0
OB, (x)
. 9G(x, ) 0P

/fmr(x) Cly-2) ( on D on® X)) do(z) =0
as r — 0.

iii. Using the same ideas as in the proof of Lemma 5.9 prove that

and

iv. Combine the results above to show that

[, . e - ety e Gy ()
as r — 0. (Observe the left-hand side of (}) is the first term on the right-hand side
of (1))

v. Swap the roles of x and y in () to conclude a similar statement for the second

term on the right-hand side of (). Combine your answer with (f) and (f) to prove
G(x,y) = G(y,x).

4.4 Prove the following lemma, which is a generalisation of Lemma 5.9 that does not assume that

4.5

u is harmonic.

Lemma. Let §2 be an open bounded set with C1 boundary and suppose that u € C?() is such
that Au = f for some f € C(Q?). Then

u) = [ {ay -2 (52) ) (5n) &= %) faot) - [ r5)2(y - xay.

for each x € Q.

[Hint: Follow the proof of Lemma 5.9.]
Use the lemma from question 4.4 to prove the following generalisation of Theorem 5.11.

Theorem. Let 0 C R™ be an open bounded set with C? boundary, and suppose h € C?(9)
and f € C(Q). If G is a Green’s function for the Laplacian in Q then the solution of the
boundary value problem
Au=f inQ, and
{ u=nh on 09, (+)
is given by

[ (96
w) == [ () ) nwiiot) + [ 1060y

where (0G(x,-)/0n)(y) :==n(y) - VyG(x,y) is the normal derivative of y — G(x,y).

We proved the uniqueness of solutions to (x) in Section 5.2 of our notes, so when we can find
a Green’s function we have both the existence and uniqueness of solutions to (x).



