
Partial Differential Equations (TATA27)
Spring Semester 2017

Homework 4

4.1 Let Ω be an open set with C1 boundary. For λ ≥ 0, define the energy of each continuously
differentiable v : Ω→ R to be

Eλ[v] =
1

2

∫
Ω

(|∇v(x)|2 + λ|v(x)|2)dx.

Show that a function u ∈ C2(Ω) which satisfies ∆u− λu = 0 in Ω is such that

Eλ[u] ≤ Eλ[v]

for all v ∈ C1(Ω) such that v(x) = u(x) for all x ∈ ∂Ω.

Observe that the energy Eλ[v] makes sense for functions in C1(Ω), but (assuming a solution
to the corresponding boundary value problem exists) a minimiser can sometimes be found in
a better class. For example, if λ = 0, Lemma 5.5 tells us any solution u is smooth in Ω.

4.2 Let Ω be an open set with C1 boundary and h : ∂Ω→ R a C1 function. Define the energy of
each continuously differentiable v : Ω→ R to be

Eh[v] =
1

2

∫
Ω

|∇v(x)|2dx−
∫
∂Ω

h(x)v(x)dσ(x).

Show that a function u ∈ C2(Ω) which satisfies the boundary value problem{
∆u = 0 in Ω, and
∂u
∂n := n · ∇u = h on ∂Ω

is such that
Eh[u] ≤ Eh[v]

for all v ∈ C1(Ω). Here n is the outward unit normal to ∂Ω.

Here, in contrast to question 4.1, the boundary condition ∂u/∂n = h is incorporated into the
energy and we see that a solution u is a minimum of Eh over all v ∈ C1(Ω) regardless of how
v behaves at the boundary.

4.3 The aim of this question is to prove Theorem 5.12. Let Ω be an open bounded set with C2

boundary.

(a) In this part of the question we will prove that the Green’s function for the Laplacian in
Ω is unique. Suppose we have two Green’s functions G1 and G2 for the Laplacian in Ω.

i. For each fixed x ∈ Ω, prove that y 7→ G1(x,y)−G2(x,y) has a continuous extension
which belongs to C2(Ω) and is harmonic in Ω.

ii. By considering a boundary value problem that y 7→ G1(x,y)−G2(x,y) solves, prove
that G1 = G2.

(b) We now wish to prove the Green’s function is symmetric, that is G(x,y) = G(y,x) for
all x,y ∈ Ω.

i. Fix x,y ∈ Ω with x 6= y and consider the functions z 7→ u(z) := G(x, z) and
z 7→ v(z) := G(y, z). Apply Green’s second identity (5.10) to u and v in the domain
Ωr := Ω \ (Br(x) ∪Br(y)) for r > 0 so small that (Br(x) ∪Br(y)) ⊂ Ω and Br(x) ∩
Br(y) = ∅ to obtain that

0 =

∫
∂Br(x)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

+

∫
∂Br(y)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z).

(†)



ii. Using the definition of the Green’s function, prove that∫
∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)
∂n

(z)dσ(z)→ 0

and ∫
∂Br(x)

G(y, z)

(
∂G(x, ·)
∂n

(z)− ∂Φ

∂n
(z− x)

)
dσ(z)→ 0

as r → 0.

iii. Using the same ideas as in the proof of Lemma 5.9 prove that∫
∂Br(x)

Φ(z− x)
∂G(y, ·)
∂n

(z)dσ(z) = 0

and ∫
∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z) = −G(y,x).

iv. Combine the results above to show that∫
∂Br(x)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)→ G(y,x). (‡)

as r → 0. (Observe the left-hand side of (‡) is the first term on the right-hand side
of (†).)

v. Swap the roles of x and y in (‡) to conclude a similar statement for the second
term on the right-hand side of (†). Combine your answer with (†) and (‡) to prove
G(x,y) = G(y,x).

4.4 Prove the following lemma, which is a generalisation of Lemma 5.9 that does not assume that
u is harmonic.

Lemma. Let Ω be an open bounded set with C1 boundary and suppose that u ∈ C2(Ω) is such
that ∆u = f for some f ∈ C(Ω). Then

u(x) =

∫
∂Ω

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y)−

∫
Ω

f(y)Φ(y − x)dy.

for each x ∈ Ω.

[Hint: Follow the proof of Lemma 5.9.]

4.5 Use the lemma from question 4.4 to prove the following generalisation of Theorem 5.11.

Theorem. Let Ω ⊂ Rn be an open bounded set with C2 boundary, and suppose h ∈ C2(∂Ω)
and f ∈ C(Ω). If G is a Green’s function for the Laplacian in Ω then the solution of the
boundary value problem {

∆u = f in Ω, and
u = h on ∂Ω,

(∗)

is given by

u(x) = −
∫
∂Ω

(
∂G(x, ·)
∂n

(y)

)
h(y)dσ(y) +

∫
Ω

f(x)G(x,y)dy.

where (∂G(x, ·)/∂n)(y) := n(y) · ∇yG(x,y) is the normal derivative of y 7→ G(x,y).

We proved the uniqueness of solutions to (∗) in Section 5.2 of our notes, so when we can find
a Green’s function we have both the existence and uniqueness of solutions to (∗).


