LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations 22 Oktober 2007, 14-19

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson and dictionaries. No calculators.

1. Consider the following Dirichlet problem for the heat equation on the half-line:

$$
u_{t}-k u_{x x}=0 \text { for } t>0 \text { and } 0<x<\infty
$$

and

$$
u(0, t)=0 \quad \text { for } t>0,
$$

supplied with the initial condition

$$
u(x, 0)= \begin{cases}x^{2} & \text { for } 0<x<1 \\ 0 & \text { for } x>1\end{cases}
$$

Calculate $u_{x}(0, t)$ and show that this function is strictly decreasing and tends to 0 as t tends to ∞.
2. Solve the following boundary value problem for the wave equation:

$$
\begin{gathered}
u_{t t}=u_{x x} \text { for } 0<x<\pi \text { and } t>0, \\
u(0, t)=u_{x}(\pi, t)=0 \text { for } t>0
\end{gathered}
$$

and

$$
u(x, 0)=1 \quad \text { and } \quad u_{t}(x, 0)=\sin (x / 2) \text { for } 0<x<\pi .
$$

3. Consider the function $u=u(x, y)$ which satisfies the Poisson equation

$$
\Delta u=1 \text { for } x^{2}+y^{2}<1
$$

and the following Dirichlet condition

$$
u(x, y)=\cos ^{2}(x+y) \text { for } x^{2}+y^{2}=1
$$

Show that

$$
-1 / 2 \leq u(x, y)-\left(x^{2}+y^{2}+1\right) / 4 \leq 1 / 2 \text { for } x^{2}+y^{2} \leq 1 .
$$

4. Find

$$
\min \int_{2}^{4}\left(u^{2}+u u^{\prime}+2 u^{2}\right) d x
$$

where minimum is taken over all functions satisfying $u(2)=2$ and $u(4)=3$.
5. Solve the problem

$$
-u^{\prime \prime}(x)+4 u(x)=\delta(x-3) \text { for } x>0, \quad u(0)=0
$$

and $u(x) \rightarrow 0$ as $x \rightarrow \infty$. (Hint: use Fourier transform to find a particular solution to the equation)
6. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 1<x^{2}+y^{2}+z^{2}<5\right\}$. Prove that the heat equation

$$
u_{t}-\Delta u=x \quad \text { in } D \text { for } t>0
$$

with boundary conditions
$u=1$ for $x^{2}+y^{2}+z^{2}=1, \quad \frac{\partial u}{\partial \hat{n}}=0$ for $x^{2}+y^{2}+z^{2}=5$ and for $t>0$ and with the initial condition

$$
u=0 \quad \text { for } t=0
$$

has at most one solution. Here \hat{n} is the unit outward normal to the boundary of D. (Hint:use the energy method)

