LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations 22 Oktober 2007, 14-19

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson and dictionaries. No calculators.

1. Consider the following Dirichlet problem for the heat equation on the half-line:

$$u_t - ku_{xx} = 0$$
 for $t > 0$ and $0 < x < \infty$

and

$$u(0,t) = 0 \text{ for } t > 0,$$

supplied with the initial condition

$$u(x,0) = \begin{cases} x^2 & \text{for } 0 < x < 1\\ 0 & \text{for } x > 1. \end{cases}$$

Calculate $u_x(0,t)$ and show that this function is strictly decreasing and tends to 0 as t tends to ∞ .

2. Solve the following boundary value problem for the wave equation:

$$u_{tt} = u_{xx}$$
 for $0 < x < \pi$ and $t > 0$,
 $u(0,t) = u_x(\pi,t) = 0$ for $t > 0$

and

$$u(x,0) = 1$$
 and $u_t(x,0) = \sin(x/2)$ for $0 < x < \pi$.

3. Consider the function u = u(x, y) which satisfies the Poisson equation

$$\Delta u = 1$$
 for $x^2 + y^2 < 1$

and the following Dirichlet condition

$$u(x,y) = \cos^2(x+y)$$
 for $x^2 + y^2 = 1$.

Show that

$$-1/2 \le u(x,y) - (x^2 + y^2 + 1)/4 \le 1/2$$
 for $x^2 + y^2 \le 1$.

4. Find

$$\min \int_{2}^{4} (u^2 + u \, u' + 2u'^2) dx,$$

where minimum is taken over all functions satisfying u(2) = 2 and u(4) = 3.

5. Solve the problem

$$-u''(x) + 4u(x) = \delta(x-3)$$
 for $x > 0$, $u(0) = 0$,

and $u(x) \to 0$ as $x \to \infty$. (Hint: use Fourier transform to find a particular solution to the equation)

6. Let $D = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 + z^2 < 5\}$. Prove that the heat equation

$$u_t - \Delta u = x$$
 in D for $t > 0$,

with boundary conditions

$$u = 1$$
 for $x^2 + y^2 + z^2 = 1$, $\frac{\partial u}{\partial \hat{n}} = 0$ for $x^2 + y^2 + z^2 = 5$ and for $t > 0$

and with the initial condition

$$u = 0 \quad \text{for } t = 0$$

has at most one solution. Here \hat{n} is the unit outward normal to the boundary of D. (Hint:use the energy method)