LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Svar till Tentamen TATA 27 Partial Differential Equations

22 October 2007, 14-19

1.

$$
\begin{gathered}
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{1}\left(e^{-(x-y)^{2} / 4 k t}-e^{-(x+y)^{2} / 4 k t}\right) y^{2} d y, \\
u_{x}(0, t)=\frac{1}{\sqrt{4 \pi k t}} \frac{1}{k t} \int_{0}^{1 / 4 k t} z e^{-z} d z=\frac{4 h^{-1 / 2}}{\pi}\left(1-(1+h) e^{-h}\right)
\end{gathered}
$$

where $h=1 / 4 k t$. By differentiating one can check that the right hand side is a positive and increasing function of h.
2.

$$
u(x, y)=\sum_{k=0}^{\infty}\left(a_{k} \sin (k+1 / 2) t+b_{k} \cos (k+1 / 2) t\right) \sin (k+1 / 2) x .
$$

using the initial conditions, we obtain

$$
u(x, y)=2 \sin (t / 2) \sin (x / 2)+\sum_{k=0}^{\infty} b_{k} \cos (k+1 / 2) t \sin (k+1 / 2) x,
$$

where

$$
b_{k}=\frac{4}{\pi(2 k+1)} .
$$

3. Consider the function $v(x, y)=u(x, y)-\left(x^{2}+y^{2}+1\right) / 4$. This function is harmonic and $v(x, y)=\cos ^{2}(x+y)-1 / 2$ for $x^{2}+y^{2}=1$. Observing that $\cos ^{2}(x+y)-1 / 2=\cos (2(x+y)) / 2$, we conclude that $|v| \leq 1 / 2$ for $x^{2}+y^{2}=1$. Application of the maximum principle leads to the required inequality.
4. The Euler equation is

$$
2 u+u^{\prime}=\frac{d}{d x}\left(u+4 u^{\prime}\right) \quad \text { or } \quad u^{\prime \prime}=\frac{1}{2} u .
$$

Its general solution is

$$
u=a e^{-x / \sqrt{2}}+b e^{x / \sqrt{2}} .
$$

To find a and b we use the boundary conditions:

$$
u(2)=a e^{-\sqrt{2}}+b e^{\sqrt{2}}=2 \text { and } u(4)=a e^{-2 \sqrt{2}}+b e^{2 \sqrt{2}}=3 .
$$

Solving this system, we find

$$
a=\frac{3-2 e^{\sqrt{2}}}{1-e^{-2 \sqrt{2}}} \text { and } b=\frac{3-2 e^{-\sqrt{2}}}{e^{2 \sqrt{2}}-1}
$$

Finally,

$$
\min =b^{2}\left(2+\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}\left(e^{4 \sqrt{2}}-e^{2 \sqrt{2}}\right)+a^{2}\left(2-\frac{1}{\sqrt{2}}\right) \frac{1}{\sqrt{2}}\left(e^{-2 \sqrt{2}}-e^{-4 \sqrt{2}}\right)
$$

5.

$$
u(x)=\frac{1}{4}\left(e^{-2|x-3|}-e^{-2(x+3)}\right)
$$

6. Let u_{1} and u_{2} be two solutions. Then the function $u=u_{1}-u_{2}$ satisfies

$$
\begin{equation*}
u_{t}-\Delta u=0 \quad \text { in } D \text { for } t>0 \tag{1}
\end{equation*}
$$

and
$u=0$ for $x^{2}+y^{2}+z^{2}=1, \quad \frac{\partial u}{\partial \hat{n}}=0$ for $x^{2}+y^{2}+z^{2}=5$, for $t>0$.
Moreover $u=0$ for $t=0$. Multiplying (1) by u and integrating over D, we obtain

$$
\int_{D}\left(u_{t} u-\Delta u u\right) d x d y d z=0
$$

Using Green's first identity for the second term in the left-hand side and taking into account the homogeneous boundary conditions, we arrive at

$$
\int_{D}\left(u_{t} u+\nabla u \cdot \nabla u\right) d x d y d z=0
$$

Since $2 u_{t} u=d\left(u^{2}\right) / d t$, we can rewrite it as

$$
\int_{D}\left(\frac{1}{2} \frac{d}{d t} u^{2}+|\nabla u|^{2}\right) d x d y d z=0
$$

Integrating this from 0 to T we obtain

$$
\int_{D}\left(u^{2}(x, y, z, T)-u^{2}(x, y, z, 0)\right) d x d y d z+\int_{0}^{T} \int_{D}|\nabla u|^{2} d x d y d z=0
$$

Since $u=0$ for $t=0$, we have $\nabla u=0$ and $u=0$ for $t=T$. Since T is arbitrary, this implies $u=0$ and hence $u_{1}=u_{2}$.

