LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 30 Partial Differential Equations and Finite Elements 20 October 2006, 08-13

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson. No calculators.

1. Consider the following Neumann problem for the wave equation on the half-line:

$$
u_{t t}-4 u_{x x}=0 \text { for } t>0 \text { and } 0<x<\infty
$$

and

$$
u_{x}(0, t)=0 \text { for } t>0,
$$

supplied with the initial conditions

$$
u(x, 0)=0 \quad \text { and } \quad u_{t}(x, 0)= \begin{cases}x-1 & \text { for } 1 \leq x \leq 2 \\ 0 & \text { for } 0 \leq x<1 \text { and for } x>2\end{cases}
$$

Find $u(1,5 / 4)$.
2. Prove the maximum principle for the equation

$$
u_{x x}+u_{y y}+2 u_{x}=0 \quad \text { on } D,
$$

where D is the rectangle $(0,1) \times(0,2)$. Namely, prove that

$$
\max _{\bar{D}} u(x, y) \leq \max _{b d y D} u(x, y) .
$$

Hint: examine the function $u(x, y)+\varepsilon(y-c)^{2}$ with an appropriate choice of ε and c.
3. Solve the following initial boundary value problem for the heat equation:

$$
\begin{gathered}
u_{t}-5 u_{x x}=0 \text { for } t>0 \text { and } 1<x<2, \\
u(1, t)=u_{x}(2, t)=0 \text { for } t>0
\end{gathered}
$$

and

$$
u(x, 0)=x-1 \text { for } 1<x<2 .
$$

4. Solve the following problem:

$$
u_{t t}=u_{x x}+2 u_{x}+u \text { for } t>0 \text { and }-\infty<x<\infty
$$

and

$$
u(x, 0)=\delta(x), \quad u_{t}(x, 0)=0 \text { for }-\infty<x<\infty .
$$

5. Let g be a distribution on \mathbb{R}. Consider the following equation

$$
\begin{equation*}
f^{\prime}=g \tag{1}
\end{equation*}
$$

where f is unknown distribution.
(i) Let $\psi \in \mathcal{D}(\mathbb{R})$ satisfy

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi(x) d x=1 \tag{2}
\end{equation*}
$$

Show that the functional

$$
\begin{equation*}
(f, \phi)=-\left(g, \int_{-\infty}^{x} \phi(y) d y-\int_{-\infty}^{\infty} \phi(y) d y \int_{-\infty}^{x} \psi(y) d y\right) \tag{3}
\end{equation*}
$$

is a distribution and solves equation (1).
(ii) Let ψ_{1} and ψ_{2} be two test functions satisfying (2) and let f_{1} and f_{2} be the distributions given by (3). Show that $f_{1}-f_{2}=$ const.
6. Let D be a bounded domain in \mathbb{R}^{3} with boundary $b d y D$. Prove that

$$
\min \iiint_{D}\left(|\nabla u|^{2}-2 f u\right) d x d y d z
$$

where min is taken over all u which is zero on $b d y D$, is attained on the solution of

$$
-\Delta u=f \quad \text { in } D
$$

and

$$
u=0 \quad \text { on } b d y D
$$

