Lösningsskisser till tentamen i TATA27 Partiella differentialekvationer 2013-05-27

1. Using the formula sheet, the correct ansatz with Neumann boundary conditions is $u(x, t)=$ $a_{0}(t) / 2+\sum_{k=1}^{\infty} a_{k}(t) \cos \left(\frac{\pi}{2} k x\right)$. The PDE gives the ODEs $a_{0}^{\prime}(t)=0, a_{k}^{\prime}(t)=-3(\pi k / 2)^{2} a_{k}(t)$, $k \geq 1$, for the coefficients. Thus $u(x, t)=a_{0} / 2+\sum_{k=1}^{\infty} a_{k} \exp \left(-3(\pi k / 2)^{2} t\right) \cos \left(\frac{\pi}{2} k x\right)$. The inital data give

$$
a_{k}=\int_{0}^{2} x^{2} \cos (\pi k x / 2) d x=(2 /(k \pi))^{3} \int_{0}^{\pi k} t^{2} \cos t d t=\ldots=\frac{16(-1)^{k}}{\pi^{2} k^{2}}, \quad k \geq 1
$$

by making the change of variables $t=k \pi x / 2$ when $k \geq 1$. We obtain the solution

$$
u(x, t)=\frac{4}{3}+\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} e^{-3\left(\frac{\pi}{2} k\right)^{2} t} \cos \left(\frac{\pi}{2} k x\right)
$$

where we see that $\lim _{t \rightarrow \infty} u=4 / 3$.
2. (a) Using the change of variables $\xi=x-c t, \eta=x+c t$, the chain rule shows that the wave equation is equivalent to

$$
c^{2} u_{\xi \xi}+c^{2} u_{\eta \eta}-2 c^{2} u_{\xi \eta}=c^{2}\left(u_{\xi \xi}+u_{\eta \eta}+2 u_{\xi \eta}\right)
$$

that is $u_{\xi \eta}=0$. Integration gives the general solution $u(\xi, \eta)=f(\xi)+g(\eta)$ as claimed.
(b) The boundary and initial conditions read

$$
\begin{cases}f(-c t)+g(c t)=b(t), & t>0 \\ f(x)+g(x)=a(x), & x>0 \\ -c f^{\prime}(x)+c g^{\prime}(x)=0, & x>0\end{cases}
$$

The last equation shows that $f(s)=g(s)+d$ for all $s>0$, where d is some constant. Thus the second gives $g(s)=(a(s)-d) / 2, f(s)=(a(s)+d) / 2$ for $s>0$, and the first gives $f(-s)=b(s / c)-g(s)$ for $s>0$. Thus gives the solution

$$
u(x, t)= \begin{cases}b(t-x / c)+\frac{1}{2}(a(x+c t)-a(c t-x)), & 0<x<c t \\ \frac{1}{2}(a(x+c t)+a(x-c t)), & 0<c t<x\end{cases}
$$

Note that we do not need to know $g(s)$ for $s<0$, or the value of the constant d.
3. (a) From the formula sheet, the fundamental solution for the plane is $\frac{1}{4 \pi} \ln \left(x^{2}+y^{2}\right)$. Applying the method of reflection, we see that

$$
\begin{aligned}
& G_{D}=\frac{1}{4 \pi} \ln \left((x-a)^{2}+(y-b)^{2}\right)-\frac{1}{4 \pi} \ln \left((x+a)^{2}+(y-b)^{2}\right) \\
& \\
& \quad+\frac{1}{4 \pi} \ln \left((x+a)^{2}+(y+b)^{2}\right)-\frac{1}{4 \pi} \ln \left((x-a)^{2}+(y+b)^{2}\right)
\end{aligned}
$$

is zero on ∂D and differs from the fundamental solution, centered at (a, b), by terms which are harmonic in D. Thus this is indeed the Green's function.
(b) By Green's formulas $u(a, b)=\int_{\partial D} \frac{\partial G_{D}}{\partial n} u d s$. On the positive x-axis, we have

$$
\frac{\partial G_{D}}{\partial n}=-\left.\partial_{y} G_{D}((x, y),(a, b))\right|_{y=0}=-\frac{1}{4 \pi}\left(\frac{-4 b}{(x-a)^{2}+b^{2}}+\frac{4 b}{(x+a)^{2}+b^{2}}\right) .
$$

This gives the solution

$$
u(a, b)=\frac{b}{\pi} \int_{0}^{\infty}\left(\frac{1}{(x-a)^{2}+b^{2}}-\frac{1}{(x+a)^{2}+b^{2}}\right) h(x) d x .
$$

4. In polar coordinates, we have $f_{1}=1-r, f_{2}=\left(r-r^{2}\right) \cos \varphi, \nabla f_{1}=-\hat{r}$ and $\nabla f_{2}=$ $(1-2 r) \cos \varphi \hat{r}-(1-r) \sin \varphi \hat{\varphi}$, and get

$$
\begin{gathered}
\int_{D} f_{1}^{2}=2 \pi \int_{0}^{1}\left(r-2 r^{2}+r^{3}\right) d r=\pi / 6, \quad \int_{D} f_{2}^{2}=\pi \int_{0}^{1}\left(r^{3}-2 r^{4}+r^{5}\right) d r=\pi / 60 \\
\int_{D}\left|\nabla f_{1}\right|^{2}=2 \pi \int_{0}^{1} r d r=\pi, \quad \int_{D}\left|\nabla f_{2}\right|^{2}=\pi \int_{0}^{1}\left(2 r-6 r^{2}+5 r^{3}\right) d r=\pi / 4
\end{gathered}
$$

On the other hand, it is clear that $\int_{D} f_{1} f_{2} d x d y=\int_{D} \nabla f_{1} \cdot \nabla f_{2} d x d y=0$ since $\int_{0}^{2 \pi} \cos \varphi d \varphi=$ 0 . Therefore the matrices in the Rayleigh-Ritz method are diagonal and we get the Rayleigh quotients $\pi /(\pi / 6)=6$ and $(\pi / 4) /(\pi / 60)=15$ as approximations to the first two eigenvalues. (More exact $\lambda_{1} \approx 5.78$ and $\lambda_{2} \approx 14.68$.)
5. (a) This is the Laplace equation, and by the maximum principle for this equation, $u\left(x_{0}, y_{0}\right) \geq$ 0 at some boundary point. $E=\partial D$ is the smallest possible such set.
(b) This is the wave equation. Such a point need not exist, which the example $u(x, y)=$ $2 \sin (x) \sin (y)-1$ shows. (A full proof!)
(c) With $t=x$, this is the backward heat equation. The maximum principle for the heat equation, with time reversed, tells that if $u \leq 1 / 2$ on $E:=\partial D \cap\{(x, y) ; x \geq 1 / 2\}$, then $u(1 / 2,1 / 2) \leq 1 / 2$. Therefore, if now $u(1 / 2,1 / 2)=1$, then $\max _{E} u \geq 0$.
6. Differentiate twice:

$$
\begin{aligned}
f^{\prime}(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos \varphi u_{x}^{\prime}(x+r \cos \varphi, y+r \sin \varphi)+\sin \varphi u_{y}^{\prime}(x+r \cos \varphi, y+r \sin \varphi)\right) d \varphi, \\
f^{\prime \prime}(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos ^{2} \varphi u_{x x}^{\prime}(x+r \cos \varphi, y+r \sin \varphi)\right. \\
& \left.+\sin (2 \varphi) u_{x y}^{\prime}(x+r \cos \varphi, y+r \sin \varphi)+\sin ^{2} \varphi u_{y y}^{\prime}(x+r \cos \varphi, y+r \sin \varphi)\right) d \varphi .
\end{aligned}
$$

Using the continuity of the second derivatives, we get

$$
\begin{aligned}
0=\lim _{r \rightarrow 0} f^{\prime \prime}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\cos ^{2} \varphi u_{x x}^{\prime}(x, y)+\sin (2 \varphi) u_{x y}^{\prime}(x, y)\right. & \left.+\sin ^{2} \varphi u_{y y}^{\prime}(x, y)\right) d \varphi \\
& =\frac{1}{2} u_{x x}(x, y)+\frac{1}{2} u_{y y}(x, y)
\end{aligned}
$$

which proves that u is a harmonic function.

