Tentamen i Partiella differentialekvationer TATA27

2013-05-27 kl 8-13

You are allowed to use the formula sheet for TATA27 which is handed out at the exam. No calculators allowed.

1. Solve

$$
\begin{cases}u_{t}(x, t)=3 u_{x x}(x, t), & 0<x<2, t>0 \\ u_{x}(0, t)=0=u_{x}(2, t), & t>0 \\ u(x, 0)=x^{2}, & 0<x<2\end{cases}
$$

for $u(x, t), 0<x<2, t>0$. Calculate $\lim _{t \rightarrow \infty} u(x, t)$ for $0<x<2$.
2. (a) Show that any solution $u(x, t)$ to the one dimensional wave equation $u_{t t}=$ $c^{2} u_{x x}$ is of the form

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

for some one-variable functions $f(s)$ and $g(s)$.
(b) Use the result from (a) to solve the initial/boundary value problem

$$
\begin{cases}u_{t t}(x, t)=c^{2} u_{x x}(x, t), & x>0, t>0, \\ u(0, t)=b(t), & t>0, \\ u(x, 0)=a(x), & x>0, \\ u_{t}(x, 0)=0, & x>0,\end{cases}
$$

for given functions $a(s), b(s), s>0$.
3. (a) Find the Green's function

$$
G_{D}((x, y),(a, b))
$$

for the first quadrant $D:=\{(x, y) ; x, y>0\}$ with pole at $(a, b) \in D$. Hint: The points $(a, b),(-a, b),(a,-b)$ and $(-a,-b)$ are relevant.
(b) Solve the Dirichlet problem

$$
\begin{cases}u_{x x}(x, y)+u_{y y}(x, y)=0, & x>0, y>0, \\ u(x, 0)=h(x), & x>0, \\ u(0, y)=0, & y>0,\end{cases}
$$

for any given function $h(x), x>0$.
4. Find approximations to the first two Dirichlet eigenvalues for the Laplace operator on the unit disk $D:=\left\{(x, y) ; x^{2}+y^{2}<1\right\}$, by using Rayleigh-Ritz's method with the two test functions $f_{1}(x, y)=1-\sqrt{x^{2}+y^{2}}$ and $f_{2}(x, y)=x\left(1-\sqrt{x^{2}+y^{2}}\right)$.
Hint: In polar coordinates the gradient is $\nabla u=u_{r} \hat{r}+r^{-1} u_{\varphi} \hat{\varphi}$.
5. (a) Assume that $u(x, y)$ is a solution to the partial differential equation

$$
u_{y y}=-u_{x x}
$$

on the square $D:=\{(x, y) ; 0<x<1,0<y<1\}$ and that $u(1 / 2,1 / 2)=1$. Is there necessarily a point $\left(x_{0}, y_{0}\right)$ on the boundary ∂D where $u\left(x_{0}, y_{0}\right) \geq 0$? If so, determine the smallest subset $E \subset \partial D$ which necessarily contains such a point $\left(x_{0}, y_{0}\right)$.
(b) Same problem for the equation $u_{y y}-u_{x x}=0$.
(c) Same problem for the equation $u_{y y}+u_{x}=0$.

Motivate your answers. You only need to give full proofs of your statements for one of the three equations. (Which one is your choice.)
6. Assume that u is a twice continuously differentiable function in a domain $D \subset \mathbf{R}^{2}$ with satisfies the mean value property, that is

$$
f(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(x+r \cos \varphi, y+r \sin \varphi) d \varphi
$$

equals $u(x, y)$ for any r less than the distance from (x, y) to ∂D, for any $(x, y) \in D$. Prove that u is a harmonic function in D.

