LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Svar till Tentamen TATA 27/TEN1 Partial Differential Equations 28 May 2011, 08-13

1. We are looking for u in the form $u=1+v$. Then v satisfies

$$
\begin{gathered}
v_{t t}=4 v_{x x} \text { for } x>0 \text { and } t>0 \\
v(0, t)=0 \text { for } t>0
\end{gathered}
$$

and

$$
v(x, 0)=x-1 \text { and } v_{t}(x, 0)=x^{2} \text { for } x>0
$$

Now we can use the odd extension and d'Alembert's formula, as the result we obtain

$$
v(x, t)=x-1+\frac{1}{12}\left((x+2 t)^{3}-(x-2 t)^{3}\right) \text { for } x>2 t
$$

and

$$
v(x, t)=x+\frac{1}{12}\left((x+2 t)^{3}-(2 t-x)^{3}\right) \text { for } x<2 t
$$

Therefore, $u(1,1)=2+\frac{1}{12}\left(3^{3}-1\right)=\frac{25}{6}$.
2. We are looking for the solution u in the form $u=1-x+v$. Then v satisfies

$$
\begin{gathered}
v_{t}=4 v_{x x} \text { for } 0<x<2 \text { and } t>0 \\
v(0, t)=0 \text { and } v_{x}(2, t)=0 \text { for } t>0
\end{gathered}
$$

and

$$
v(x, 0)=x-1 \text { for } 0<x<2
$$

Now, we can use the method of separation of variables, which gives

$$
v(x, y)=\sum_{k=0}^{\infty} A_{k} e^{-4 \lambda_{k} t} \sin \sqrt{\lambda_{k}} x
$$

where

$$
\lambda_{k}=\pi / 4+k \pi / 2, k=0,1,2, \ldots \quad \text { and } \quad A_{k}=\int_{0}^{2}(x-1) \sin \sqrt{\lambda_{k}} x d x
$$

3. We cannot apply the maximum principle for the non-homogeneous Poisson equation. We represent u as $u=x^{2}+y^{2}+v$. Then v satisfies

$$
v_{x x}+v_{y y}=0 \text { for } 0<x<1 \text { and } 0<y<2
$$

and is subject to the Dirichlet boundary conditions

$$
\begin{aligned}
& u(x, 0)=x-x^{2} \text { for } 0<x<1, u(1, y)=2 y-y^{2} \text { for } 0<y<2 \\
& u(x, 2)=3 x-2-x^{2} \text { for } 0<x<1 \text { and } u(0, y)=y-y^{2} \quad \text { for } 0<y<2
\end{aligned}
$$

Applying the maximum principle we get $-2 \leq v(x, y) \leq 1$ which implies

$$
-2+x^{2}+y^{2} \leq u(x, y) \leq 1+x^{2}+y^{2}
$$

4. Equation for u is $u^{\prime \prime}-u=e^{x} / 2$. Its general solution is

$$
u(x)=\frac{x e^{x}}{4}+a e^{x}+b e^{-x}
$$

Using the first boundary condition, we obtain

$$
u(x)=\frac{(x-1) e^{x}}{4}+a\left(e^{x-1}-e^{-x+1}\right)
$$

Taking into account the second boundary condition we get

$$
a=\frac{4\left(e^{-3}-e^{3}\right)}{3 e^{4}}
$$

5. The answer is

$$
f^{\prime \prime}=g(x)+2 \delta(x-2)+2 \delta(x-3)
$$

where $g(x)=2$ if $x<2$ or $x>3$ and $g(x)=-2$ if $2<x<3$.
6. Assume that there are two solutions u_{1} and u_{2} of the problem. Then $u=u_{2}-u_{1}$ satisfies

$$
\begin{gather*}
u_{t t}-u_{x x}-u_{y y}=0 \text { for } x^{2}+y^{2}<2, t>0 \tag{1}\\
u(x, y, t)=0 \text { for } x^{2}+y^{2}=2, t>0
\end{gather*}
$$

and

$$
u(x, y, 0)=u_{t}(x, y, 0)=0 \text { for } x^{2}+y^{2}<2
$$

Multiplying (1) by u_{t} and integrating over the disc $D=\left\{(x, y): x^{2}+y^{2}<2\right\}$ we get

$$
\begin{equation*}
\int_{D}\left(u_{t t}-u_{x x}-u_{y y}\right) u_{t} d x d y=0 \tag{2}
\end{equation*}
$$

Using that

$$
\int_{D} u_{t t} u_{t} d x d y=\frac{1}{2} \frac{d}{d t} \int_{D} u_{t}^{2} d x d y
$$

and

$$
-\int_{D}\left(u_{x x}+u_{y y}\right) u_{t} d x d y=\int_{D}\left(u_{x} u_{x t}+u_{y} u_{y t}\right) d x d y=\frac{1}{2} \frac{d}{d t} \int_{D}\left(u_{x}^{2}+u_{y}^{2}\right) d x d y
$$

we derive from (2) that

$$
\frac{d}{d t}\left(\int_{D}\left(u_{t}^{2}+u_{x}^{2}+u_{y}^{2}\right) d x d y\right)=0
$$

which implies

$$
\int_{D}\left(u_{t}^{2}+u_{x}^{2}+u_{y}^{2}\right) d x d y=c \quad \text { for all } t
$$

where c is a constant. Using zero initial conditions for u we conclude that the left-hand side of the last equality is zero for $t=0$ and hence the constant c is also zero. This implies that $u_{t}=0$ and $u_{x}=u_{y}=0$ and therefore u is a constant. Since $u=0$ on the boundary we obtain $u=0$ everywhere.

