LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations 14 January 2010, 14-19

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson. No calculators.

1. Solve the following Dirichlet problem for the heat equation on the half-line:

$$
u_{t}=2 u_{x x} \quad \text { for } t>0 \text { and } x>0
$$

with the boundary condition

$$
u(0, t)=1 \text { for } t>0
$$

together with the initial condition

$$
u(x, 0)=x^{2} \text { for } x>0 .
$$

Show that $u_{x}(0,1)>0$.
2. Solve the following boundary value problem for the wave equation:

$$
\begin{gathered}
u_{t t}-3 u_{x x}=0 \text { for } 0<t \text { and } 0<x<3, \\
u(0, t)=1 \text { and } u(3, t)=0 \text { for } 0<t
\end{gathered}
$$

and

$$
u(x, 0)=u_{t}(x, 0)=0 \quad \text { for } 0<x<3 .
$$

3. Consider the function $u=u(x, t)$ which satisfies the Poisson equation

$$
u_{x x}+u_{y y}=1 \text { for } 0<x<4 \text { and } 0<y<2
$$

the Dirichlet boundary conditions

$$
u(0, y)=u(4, y)=0 \text { for } 0<y<2
$$

and

$$
u(x, 0)=1 \text { and } u(x, 2)=2
$$

Show that

$$
\frac{x^{2}}{2}-2 x \leq u(x, y) \leq 4+\frac{x^{2}}{2}-2 x \text { for } 0<x<4 \text { and } 0<y<2 .
$$

4. Find the function $y=u(x)$ that makes the integral

$$
\int_{0}^{2}\left(u^{\prime 2}+2 x u+u^{2}\right) d x
$$

minimal subject to the constrains $u(0)=0$ and $u^{\prime}(2)=1$.
5. Calculate the second derivative of $f(x)=\left|x^{2}+x-2\right|$ in distributional sense.
6. Show that the problem

$$
\begin{gathered}
u_{x x}+u_{y y}=2 \text { for } 1<x<2 \text { and } 1<y<2, \\
u(1, y)=u_{x}(2, y)=1 \text { for } 1<y<2 \\
u(x, 1)=u(x, 2)=0 \text { for } 1<x<2
\end{gathered}
$$

has at most one solution.

