LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Svar till Tentamen TATA 27 Partial Differential Equations

14 January 2010, 14-19

1.

$$
u(x, t)=1+\frac{1}{\sqrt{8 \pi t}} \int_{0}^{\infty}\left(e^{-(x-y)^{2} / 8 t}-e^{-(x+y)^{2} / 8 t}\right)\left(y^{2}-1\right) d y .
$$

Therefore

$$
u_{x}(0, t)=\frac{1}{2 \sqrt{8 \pi t}} \int_{0}^{\infty} e^{-y^{2} / 8 t} y\left(y^{2}-1\right) d y
$$

After the change of variable $y^{2}=8 t z$ we obtain

$$
u_{x}(0, t)=\sqrt{\frac{2 t}{\pi}} \int_{0}^{\infty} e^{-z}(8 t z-1) d z=\sqrt{\frac{2 t}{\pi}}(8 t-1)
$$

This implies that $u_{x}(0,1)>0$.
2.

$$
u(x, t)=1-\frac{x}{3}+v(x, t),
$$

where v satisfies the problem

$$
\begin{gathered}
v_{t t}-3 v_{x x}=0 \text { for } 0<t \text { and } 0<x<3, \\
v(0, t)=0 \text { and } v(3, t)=0 \text { for } 0<t
\end{gathered}
$$

and

$$
v(x, 0)=\frac{x}{3}-1, \quad v_{t}(x, 0)=0 \quad \text { for } 0<x<3 .
$$

Now one can use the method of separation of variables. The answer is

$$
u(x, t)=1-\frac{x}{3}+\sum_{n=1}^{\infty} A_{n} \cos \left(\sqrt{3} \beta_{n} t\right) \sin \left(\beta_{n} x\right),
$$

where

$$
A_{n}=-\frac{2}{3 \beta_{n}}, \quad \beta_{n}=\frac{n \pi}{3} .
$$

3. Let $u(x, y)=x^{2} / 2-2 x+v(x, y)$. Then

$$
v_{x x}+v_{y y}=0 \text { for } 0<x<4 \text { and } 0<y<2
$$

and satisfies the Dirichlet boundary conditions

$$
v(0, y)=v(4, y)=0 \quad \text { for } 0<y<2
$$

together with

$$
v(x, 0)=1+2 x-x^{2} / 2 \text { and } v(x, 2)=2+2 x-x^{2} / 2
$$

Now applying maximum principle to v and observing that $0 \leq v \leq 4$ on the boundary we arrive at the required inequality.
4. Equation for u is $u^{\prime \prime}-u-x=0$. It's general solution is

$$
u(x)=-x+A e^{x}+B e^{-x}
$$

Using boundary conditions we obtain

$$
A=2\left(e^{2}+e^{-2}\right)^{-1}, \quad B=-A
$$

5. $f^{\prime \prime}(x)=6 \delta(x-1)+6 \delta(x+2)+h(x)$, where $h(x)=2$ for $x<-2$ and for $x>1$ and $h(x)=-2$ for $-2 \leq x \leq 1$.
6. The proof is essentially the same as for 4 june 2009 , problem 6.
