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1.

u(x, t) = 1 +
1√
8πt

∫ ∞
0

(
e−(x−y)2/8t − e−(x+y)2/8t

)
(y2 − 1)dy.

Therefore
ux(0, t) =

1
2
√

8πt

∫ ∞
0

e−y2/8ty(y2 − 1)dy

After the change of variable y2 = 8tz we obtain

ux(0, t) =

√
2t
π

∫ ∞
0

e−z(8tz − 1)dz =

√
2t
π

(8t− 1)

This implies that ux(0, 1) > 0.

2.
u(x, t) = 1− x

3
+ v(x, t),

where v satisfies the problem

vtt − 3vxx = 0 for 0 < t and 0 < x < 3,

v(0, t) = 0 and v(3, t) = 0 for 0 < t

and
v(x, 0) =

x

3
− 1, vt(x, 0) = 0 for 0 < x < 3.

Now one can use the method of separation of variables. The answer is

u(x, t) = 1− x

3
+
∞∑

n=1

An cos(
√

3βnt) sin(βnx),

where
An = − 2

3βn
, βn =

nπ

3
.

3. Let u(x, y) = x2/2− 2x+ v(x, y). Then

vxx + vyy = 0 for 0 < x < 4 and 0 < y < 2

and satisfies the Dirichlet boundary conditions

v(0, y) = v(4, y) = 0 for 0 < y < 2
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together with

v(x, 0) = 1 + 2x− x2/2 and v(x, 2) = 2 + 2x− x2/2.

Now applying maximum principle to v and observing that 0 ≤ v ≤ 4
on the boundary we arrive at the required inequality.

4. Equation for u is u′′ − u− x = 0. It’s general solution is

u(x) = −x+Aex +Be−x.

Using boundary conditions we obtain

A = 2(e2 + e−2)−1, B = −A.

5. f ′′(x) = 6δ(x− 1) + 6δ(x+ 2) + h(x), where h(x) = 2 for x < −2 and
for x > 1 and h(x) = −2 for −2 ≤ x ≤ 1.

6. The proof is essentially the same as for 4june 2009, problem 6.
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