LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations 15 January 2009, 14-19

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson. No calculators.

1. Consider the following Neumann problem for the wave equation on the half-line:

$$
u_{t t}=4 u_{x x} \text { for } t>0 \text { and } x>0
$$

and

$$
u_{x}(0, t)=0 \text { for } t>0,
$$

supplied with the initial condition

$$
u(x, 0)=u_{t}(x, 0)= \begin{cases}1-|x-1| & \text { for } 0<x<2 \\ 0 & \text { for } x \geq 2\end{cases}
$$

Find the solution to this problem and calculate $u(1,1)$.
2. Solve the following boundary value problem for the heat equation:

$$
\begin{gathered}
u_{t}=2 u_{x x} \text { for } 0<x<2 \text { and } t>0, \\
u(0, t)=0, u_{x}(2, t)=1 \text { for } t>0
\end{gathered}
$$

and

$$
u(x, 0)=1 \text { for } 0<x<2 .
$$

3. Consider the function $u=u(x, t)$ which satisfies the Poisson equation

$$
u_{x x}+u_{y y}=1
$$

in the disk $x^{2}+y^{2}<4$ and the Dirichlet boundary condition:

$$
u(x, y)=x y \text { for } x^{2}+y^{2}=4 .
$$

Show that

$$
\frac{x^{2}+y^{2}}{4}-3 \leq u(x, y) \leq \frac{x^{2}+y^{2}}{4}+1 \text { for } x^{2}+y^{2} \leq 4 .
$$

4. Find the curve $y=u(x)$ that makes the integral

$$
\int_{0}^{1}\left(u^{\prime 2}+x u\right) d x
$$

minimal subject to the constrains $u(0)=0$ and $u(1)=1$.
5. Calculate the second derivative of $f(x)=|\sin x|$ in distributional sense.
6. Show that the problem

$$
\begin{gathered}
u_{t}-u_{x x}=0 \text { for } 1<x<2 \text { and } t>0 \\
u(1, t)=u_{x}(2, t)=0 \text { for } t>0 \\
u(x, 0)=1 \text { for } 1<x<2
\end{gathered}
$$

has at most one solution.

