LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations
 14 January 2008, 14-19

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson. No calculators.

1. Consider the following Dirichlet problem for the wave equation on the half-line:

$$
u_{t t}-3 u_{x x}=0 \text { for } t>0 \text { and } 0<x<\infty
$$

and

$$
u(0, t)=0 \quad \text { for } t>0,
$$

satisfying the initial conditions $u(x, 0)=0$ for $x>0$ and

$$
u_{t}(x, 0)= \begin{cases}1 & \text { for } 1 \leq x \leq 2 \\ 0 & \text { for } x>2 \text { and for } 0<x<1 .\end{cases}
$$

Find the solution to this problem and calculate $u(1 / 2,1 / 3)$.
2. Solve the following boundary value problem for the Laplace equation:

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \text { for } 0<x<3 \text { and } 0<y<2, \\
u_{y}(x, 0)=u(x, 2)=0 \text { for } 0<x<3
\end{gathered}
$$

and

$$
u_{x}(0, y)=y^{2}-4 \quad \text { and } \quad u(3, y)=0 \text { for } 0<y<2 .
$$

3. Consider the function $u=u(x, t)$ which satisfies the heat equation

$$
u_{t}-u_{x x}=1 \text { for } 0<x<1 \text { and } t>0,
$$

the Dirichlet conditions

$$
u(0, t)=u(1, t)=0) \quad \text { for } t>0
$$

and the initial condition $u(x, 0)=0$. Show that $x(1-x) / 2-1 / 8 \leq$ $u(x, t) \leq x(1-x) / 2$ and then improve the lower estimate by showing that u is nonnegative.
4. Find

$$
\min \int_{0}^{1}\left(u^{2}+3 u^{\prime 2}+x u^{\prime}\right) d x
$$

where the minimum is taken over all functions satisfying $u(0)=1$ and $u(1)=2$.
5. Let

$$
f(x)= \begin{cases}x & \text { for } x<0 \\ 1 & \text { for } 0<x<1 \\ x^{3} & \text { for } x>1\end{cases}
$$

Calculate the second derivative of f in distributional sense.
6. Show that the wave equation

$$
u_{t t}-4 u_{x x}=\cos \left(e^{t} x\right) \text { for } 0<x<1 \text { and } t>0
$$

supplied with boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u_{x}(1, t)=0 \text { for } t>0
$$

and satisfying the initial conditions

$$
u(x, 0)=u_{t}(x, 0)=0 \text { for } 0<x<1
$$

has at most one solution. (Use the energy method for proving this uniqueness result).

