LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Tentamen TATA 27 Partial Differential Equations 23 August 2008, 08-13

You can use on this examination Formelsamlingen i partiella diff.ekv. för M3 av L-E Andersson. No calculators.

1. Consider the following Dirichlet problem for the heat equation on the half-line:

$$
u_{t}-k u_{x x}=0 \text { for } t>0 \text { and } 0<x<\infty
$$

and

$$
u(0, t)=0 \quad \text { for } t>0,
$$

supplied with the initial condition

$$
u(x, 0)=x^{2} \quad \text { for } x>0
$$

Calculate explicitly the flux $k u_{x}$ at $x=0$ for all $t>0$.
2. Solve the following boundary value problem for the wave equation:

$$
\begin{aligned}
& u_{t t}=u_{x x} \text { for } 0<x<1 \text { and } 0<t, \\
& u(0, t)=u(1, t)=0 \text { for } 0<x<1
\end{aligned}
$$

and

$$
u(x, 0)=\sin \pi x \text { and } u_{t}(x, 0)=1 \text { for } 0<x<1 .
$$

3. Consider the function $u=u(x, t)$ which satisfies the Poisson equation

$$
u_{x x}+u_{y y}=1
$$

on the unite square $0<x<1$ and $0<y<1$ and zero Dirichlet boundary conditions on the boundary of this unite square. Show by using the maximum principle that

$$
u(1 / 2,1 / 2) \leq-1 / 16
$$

(Hint: use the maximum principle for the function $u-\left((x-\alpha)^{2}+(y-\right.$ $\left.\alpha)^{2}\right) / 4$ with a certain $\alpha \in[0,1]$).
4. Find

$$
\min \int_{0}^{\infty}\left(u^{\prime 2}+x u u^{\prime}+u^{2}\right) d x,
$$

where the minimum is taken over all functions satisfying $u(0)=1$ and $u(x) \rightarrow 0$ as $x \rightarrow \infty$.
5. Let

$$
f(x)= \begin{cases}\sin x & \text { for } x<0 \\ e^{x}-1 & \text { for } 0<x<1 \\ x^{3} & \text { for } x>1\end{cases}
$$

Calculate the second derivative of f in distributional sense.
6. Let V be a bounded domain in \mathbb{R}^{3} with boundary S. Consider the following boundary value problem

$$
\begin{cases}\Delta u=f & \text { in } V \\ \frac{\partial u}{\partial \hat{n}}+\alpha u=0 & \text { on } S,\end{cases}
$$

where α is a positive constant, \hat{n} is the outward unit normal to the boundary and f is a function on V. Prove that this problem has at most one solution.

