LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Svar till Tentamen TATA 27 Partial Differential Equations 14 January 2008, 14-19

1.

$$
u(1 / 2,1 / 3)=\frac{2-\sqrt{3}}{12}
$$

2.

$$
u(x, y)=\sum_{k=0}^{\infty} a_{k}\left(e^{\sqrt{\lambda_{k}}(x-3)}-e^{-\sqrt{\lambda_{k}}(x-3)}\right) \cos \lambda_{k} y
$$

where

$$
\lambda_{k}=\frac{\pi}{2}\left(k+\frac{1}{2}\right)
$$

and

$$
a_{k}\left(e^{-\sqrt{\lambda_{k}} 3}-e^{\sqrt{\lambda_{k}} 3}\right)=\int_{0}^{2}\left(y^{2}-4\right) \cos \lambda_{k} y d y=-\frac{2}{\lambda_{k}^{3}} \sin 2 \lambda_{k}
$$

3. Using the maximum principle for the heat equation and for the function $v(x, t)=u(x, t)-x(1-x) / 2$, we obtain the inequalities $-1 / 8 \leq$ $v(x, t) \leq 0$, which imply

$$
-1 / 8+x(1-x) / 2 \leq u(x, t) \leq x(1-x) / 2
$$

Using the maximum principle for the function $w(x, t)=u(x, t)-t$ we obtain that $-t \leq u(x, \tau) \leq 0$ for $0 \leq \tau \leq t$, which implies that u is nonnegative.
4. The Euler equation is

$$
2 u=6 u^{\prime \prime}+1
$$

and its general solution is

$$
u=\frac{1}{2}+a e^{x / \sqrt{3}}+b e^{-x / \sqrt{3}}
$$

Using the boundary conditions for u we obtain

$$
b=\left(\frac{3}{2}-\frac{1}{2} e^{1 / \sqrt{3}}\right)\left(e^{-1 / \sqrt{3}}-e^{1 / \sqrt{3}}\right)
$$

and

$$
a=\left(\frac{3}{2}-\frac{1}{2} e^{-1 / \sqrt{3}}\right)\left(e^{1 / \sqrt{3}}-e^{-1 / \sqrt{3}}\right)
$$

Using these formulae you can calculate min.
5.

$$
f^{\prime \prime}(x)=\delta^{\prime}(x)-\delta(x)+3 \delta(x-1)+h(x)
$$

where $h(x)=0$ for $x<1$ and $h(x)=6 x$ for $x>1$.

