LINKÖPINGS TEKNISKA HÖGSKOLA

Matematiska institutionen
Vladimir Kozlov

Svar till Tentamen TATA 27 Partial Differential Equations

23 August 2008, 08-13
1.

$$
u_{x}(0, t)=\frac{4 \sqrt{k t}}{\sqrt{\pi}}
$$

2.

$$
u(x, y)=\cos \pi t \sin \pi x+\sum_{k=1}^{\infty} A_{k} \sin k \pi t \sin k \pi x
$$

where

$$
A_{k}=\frac{2\left((-1)^{k}-1\right)}{k^{2} \pi^{2}}
$$

3. Using the maximum principle for the function $v(x, t)=u-\left((x-\alpha)^{2}+\right.$ $\left.(y-\alpha)^{2}\right) / 4$, we obtain the inequalities $v(x, t) \leq \max \left(-\alpha^{2} / 4,-(1-\right.$ $\alpha)^{2} / 4$), which imply

$$
u(1 / 2,1 / 2) \leq(1 / 2-\alpha)^{2} / 2+\max \left(-\alpha^{2} / 4,-(1-\alpha)^{2} / 4\right)
$$

Using this inequality for $\alpha=1 / 2$ we arrive at the required result.
4. The Euler equation is

$$
2 u^{\prime \prime}=u
$$

and its general solution is

$$
u=a e^{x / \sqrt{2}}+b e^{-x / \sqrt{2}} .
$$

Using the boundary conditions for u we obtain

$$
u=e^{-x / \sqrt{2}} .
$$

Therefore

$$
\min =\int_{0}^{\infty}\left(\frac{1}{2}+\frac{x}{\sqrt{2}}+1\right) e^{-\sqrt{2} x} d x=\sqrt{2}
$$

5.

$$
f^{\prime \prime}(x)=-(e-2) \delta^{\prime}(x-1)+(3-e) \delta(x-1)+h(x),
$$

where $h(x)=-\sin x$ for $x<0, h(x)=e^{x}$ for $0<x<1$ and $h(x)=6 x$ for $x>1$.
6. Let u_{1} and u_{2} be two different solutions. We introduce the function $u=u_{1}-u_{2}$. We have

$$
\int_{V}(\Delta u) u d V=0
$$

Using Green's formula, we obtain

$$
\int_{V}|\nabla u|^{2} d V=\int_{S} u \frac{\partial u}{\partial \hat{n}} d V
$$

Since $\frac{\partial u}{\partial \tilde{n}}=-\alpha u$ we have that

$$
\int_{V}|\nabla u|^{2} d V=-\alpha \int_{S} u^{2} d V
$$

This implies $u=0$ on S and $\nabla u=0$ in V. Therefore $u=0$.

