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Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 2

Using the method of characteristics, we set s(t) = u(X(¢),Y (t)) where (X,Y): R — R? are
the characteristic curves. If they satisfy the equations

X'(t) =1
{ Y'(t) = Y (t)

then s'(t) = u, (X (1), Y (1)) + Y (t)uy(X(t),Y(t)) =0, so s is a constant function. Solving the
ODEs above, we find X(t) =t + c and Y (t) = Cet for constants ¢ and C. Thus any solution
to the PDE is constant on the lines y = Ce” and so is of the form

u(z,y) = flye™) (1)

for an arbitrary function f: [0,00) — R. The requirement that u € C*(R3) implies we need
[ to be continuously differentiable on (0, 00). If u is to belong to C(R3.), then in particular

u(z,0) = lim u(z, y).
y—0
Substituting in the boundary condition u(z,0) = ¢(x) and (1), we find

¢(x) = u(z,0) = lim u(z,y) = lim f(ye™) = f(0).

y—0

Thus, if the PDE is to have a solution in C(R%) N C'(R2), ¢ must be a constant function.
Consequetly, (a) if ¢(z) = x there are no such solutions, and (b) if ¢(x) = 1, then (1) is
a solution for any continuous f which is continuously differentiable on (0,00) and such that

£(0) = 1.

[Olle Abrahamsson] We will show that the equation has more than one solution by solving the
equation directly. We multiply the equation by the integrating factor e to find

fx)e® =u"(z)e” +u/(z)e” = % (u'(x)e”)

SO

u(x)=e" /096 ft)etdt + coe™™

x) :/ efs/ f(t)eldtds — coe™™ + ¢;
0 0

= /r F)(1 —e™")dt — coe ™ + ¢y,
0

for a constant ¢y. Thus

where ¢; is a constant.

The condition u’(0) = u(0) says that 04cy = 0—co+c1, s0 ¢1 = 2cg, and v/ (0) = (v (€)+u(l))
says

¢
o= = ( f( Yeldt + coe™ f)(1 —e=Hdt — coe ™t + 2co>
0

/ f dt+007

SO we require fo t)dt = 0, but no restriction on cy. Thus we have that

= /O ' (L= e ™®)dt — coe™™ + 2c9 (2)

is a solution for any ¢y € R. We can check directly that such a w will be twice continuously
differentiable if and only if f is continuous. Therefore we have shown that
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(b) For a solution to exist in C?([0, ¢]) we require f to be continuous and foe f(®)dt = 0.
(a) If these conditions are satisfied then we have an infinite number of solutions in C2([0, ¢])

given by (2) for an arbitrary ¢y € R.

For £ > 0 set v(x) = u(x) + €|x|?>. As the sum of two continuous functions, v is continuous
on  and so must attain a maximum somewhere in the compact set Q = Q U 9Q. We will
now rule out the possibility that v attains its maximum in €2. Suppose to the contrary that v
attains this maximum x € 2. Then we know x is a critical point, so Vu(x) = 0 and, by the
second derivative test, Av(x) = 22‘;1 8jz»v(x) < 0. Therefore

Av(x)+x-Vou(x) =Av(x)+0<04+0=0.
But on the other hand, we can compute
Av(x) +x - Vo(x) = Au(x) + x - Vu(x) + 2¢]x|? + 2en > 2e|x|> + 2en > 0,

via the differential inequality u satisfies. These two inequalities contradict each other, so v
cannot attain its maximum in ).

Therefore v must attain its maximum at a point y € Q. Thus, for any x € ,

u(x) < v(x) <o(y) = uly) +ely]? < uly) +e0? < maxu + eC?,

where C'is the constant obtained from the fact €2 is bounded. Since the above inequality holds
for any € > 0, we have u(x) < maxgq u for any x € €, so

maxu < maxu
Q 9

Because 02 C Q we have that maxgou < maxg u and combining these two inequalities we get
that maxg u = maxpo v and the maximum of v is attained on 9€.

(a) We can compute

0,v = (O1u)(z + a,y +b), O2v = (Oiu)(x + a,y + b),
Oyv = (Oou)(x + a,y +b) and 651) = (02u)(z + a,y +b).

SO

Av(z,y) = Fv(z,y) + Oyv(x,y)
= (0u)(z + a,y +b) + (O5u)(x + a,y + b) = Au(z + a,y + b) = 0.

(b) We can compute

Orw(z,y) = cos a(O1u)(x cos a + ysin a, y cos a — x sin «)
—sina(dru)(xcosa + ysina,ycosa — rsina), and
02w (z,y) = cos® a(OFu)(z cos a + ysin a, y cos a — x sin @)
— 2cos asin a(Pe01u)(x cos v + ysin o, y cos @ — x sin )

+ sin? a(92u)(z cos a 4 y sin o, y cos o — x sin )
And

Oyw(z,y) =sina(diu)(xcosa+ ysina, ycosa — zsina)

+ cos a(Qou)(zrcosa + ysina,ycosa — xsina), and
O2w(x,y) = sin® a(d?u)(x cos a + ysin o, y cos a — xsin )

+ 2cosasina(0201u)(x cos o + ysina, y cos o — x sin «)

+ cos? a(D2u) (2 cos o + y sin i, y cos o — x sin @)



=)
Aw(z,y) = cos?® a(07u)(z cos a + ysin a, y cos a — x sin )
— 2cosasin a(Pa01u)(x cos v + ysin a, y cos @ — x sin )
+ sin® a(92u)(x cos o + ysin o, y cos a — x sin @)
+ sin? (%) (x cos a + ysin a, y cos a — x sin a)
(@
(

+ cos? a(D3u)(x cos a + ysin a, y cos a — x sin a)

+ 2 cos asin a(Go01u) (z cos a + y sin v, y cos a — x Sin )

= (cos? a + sin” o) (0%u) (z cos a + y sin v, y cos o — x sin )
+ (cos® a + sin? @) (02u) (x cos a + y sin a, y cos a — x sin a)
= (0%u)(x cos a4 y sin o, y cos a — x sin @)
+ (02u)(x cos a + ysin a, y cos a — x sin a)

= Aw(zcosa + ysina,ycosa — xsina) = 0.

2.5 Fix N > 0 and let By = {x € R"||x| < N} be a ball in R" centred at the origin. Then

/ |u(x, t)] dx—/B lu(x, to))| dx_/t;i</BNu(X s)| dx>d8
/tO/BNas [u, ) dXdS/tO/BNaS u(x, s)u (XS))dxds (3)

:/t : (Osu(x, s)u(x, s) + u(x, s)0su(x, s)) dxds,

where the second equality (commuting the derivative and integral) is be justified by our as-
sumptions. From the Schrodinger’s equations, we have that

ou ih ie?
g A el
s (%, 5) 5 u(x,s) + h|x|u(x, s)
and taking complex conjugates
ou ih ie?
— _""Am Rl

Thus
(Osu(x, 8))u(x, s) + u(x, s)(0su(x, s)) = % (Au(x, s)u(x, s) — u(x, s)Atu(x, s)) .

The divergence theorem tells us

/B ((Osu(x, 8))u(x, s) + u(x, $)(9:u(x, s))) dx

B / 227}; (Au(x, s)u(x, s) — u(x, s)Au(x, s)) dx
BN
_ _% (VU(X, S) . Vﬂ()g S) — Vu(x’ 3) . VE(X, 8)) dx
By
ih Ou ou
+ 3 . (an (x, s)u(x, s) — u(x, s)%(x, s)) do(x)

ih o B .
" om 89BN (al’l(x’ S)u(x, S) B u(x, S)%(X’ S)) do’(x),

2m

Substituting this into (3) and using our assumptions about the decay of u, we find

/ fu(x, £)[Fdx ~ / [u(x, to) [2dx
/to /aBN (811 Ju(x, 5) —U(X»S)gz(x7s)> do(x)ds

\ —tolh
2m

I /\

|0By|(1+ N)~27¢



where |0By| is the area of the set 9By and equals 3a/(3) N2, where a(3) is the volume of the
unit ball in R®. Thus |[0By|(1+N)727¢ = 3a(3)N?(1+N)~27¢ — 0 as N — oo, which proves

[ ueoix = [ futxto)ix =1,
.

R3

as required.



