
Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 2

2.1 Using the method of characteristics, we set s(t) = u(X(t), Y (t)) where (X,Y ) : R → R2 are
the characteristic curves. If they satisfy the equations{

X ′(t) = 1
Y ′(t) = Y (t)

then s′(t) = ux(X(t), Y (t)) + Y (t)uy(X(t), Y (t)) = 0, so s is a constant function. Solving the
ODEs above, we find X(t) = t + c and Y (t) = Cet for constants c and C. Thus any solution
to the PDE is constant on the lines y = Cex and so is of the form

u(x, y) = f(ye−x) (1)

for an arbitrary function f : [0,∞) → R. The requirement that u ∈ C1(R2
+) implies we need

f to be continuously differentiable on (0,∞). If u is to belong to C(R2
+), then in particular

u(x, 0) = lim
y→0

u(x, y).

Substituting in the boundary condition u(x, 0) = φ(x) and (1), we find

φ(x) = u(x, 0) = lim
y→0

u(x, y) = lim
y→0

f(ye−x) = f(0).

Thus, if the PDE is to have a solution in C(R2
+) ∩ C1(R2

+), φ must be a constant function.
Consequetly, (a) if φ(x) = x there are no such solutions, and (b) if φ(x) = 1, then (1) is
a solution for any continuous f which is continuously differentiable on (0,∞) and such that
f(0) = 1.

2.2 [Olle Abrahamsson] We will show that the equation has more than one solution by solving the
equation directly. We multiply the equation by the integrating factor ex to find

f(x)ex = u′′(x)ex + u′(x)ex =
d

dx
(u′(x)ex)

so

u′(x) = e−x
∫ x

0

f(t)etdt+ c0e
−x

for a constant c0. Thus

u(x) =

∫ x

0

e−s
∫ s

0

f(t)etdtds− c0e−x + c1

=

∫ x

0

f(t)(1− et−x)dt− c0e−x + c1,

where c1 is a constant.

The condition u′(0) = u(0) says that 0+c0 = 0−c0+c1, so c1 = 2c0, and u′(0) = 1
2 (u′(`)+u(`))

says

c0 =
1

2

(
e−`

∫ `

0

f(t)etdt+ c0e
−` +

∫ `

0

f(t)(1− et−`)dt− c0e−` + 2c0

)

=
1

2

∫ `

0

f(t)dt+ c0,

so we require
∫ `

0
f(t)dt = 0, but no restriction on c0. Thus we have that

u(x) =

∫ x

0

f(t)(1− et−x)dt− c0e−x + 2c0 (2)

is a solution for any c0 ∈ R. We can check directly that such a u will be twice continuously
differentiable if and only if f is continuous. Therefore we have shown that



(b) For a solution to exist in C2([0, `]) we require f to be continuous and
∫ `

0
f(t)dt = 0.

(a) If these conditions are satisfied then we have an infinite number of solutions in C2([0, `])
given by (2) for an arbitrary c0 ∈ R.

2.3 For ε > 0 set v(x) = u(x) + ε|x|2. As the sum of two continuous functions, v is continuous
on Ω and so must attain a maximum somewhere in the compact set Ω = Ω ∪ ∂Ω. We will
now rule out the possibility that v attains its maximum in Ω. Suppose to the contrary that v
attains this maximum x ∈ Ω. Then we know x is a critical point, so ∇v(x) = 0 and, by the
second derivative test, ∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. Therefore

∆v(x) + x · ∇v(x) = ∆v(x) + 0 ≤ 0 + 0 = 0.

But on the other hand, we can compute

∆v(x) + x · ∇v(x) = ∆u(x) + x · ∇u(x) + 2ε|x|2 + 2εn ≥ 2ε|x|2 + 2εn > 0,

via the differential inequality u satisfies. These two inequalities contradict each other, so v
cannot attain its maximum in Ω.

Therefore v must attain its maximum at a point y ∈ ∂Ω. Thus, for any x ∈ Ω,

u(x) ≤ v(x) ≤ v(y) = u(y) + ε|y|2 ≤ u(y) + εC2 ≤ max
∂Ω

u+ εC2,

where C is the constant obtained from the fact Ω is bounded. Since the above inequality holds
for any ε > 0, we have u(x) ≤ max∂Ω u for any x ∈ Ω, so

max
Ω

u ≤ max
∂Ω

u

Because ∂Ω ⊆ Ω we have that max∂Ω u ≤ maxΩ u and combining these two inequalities we get
that maxΩ u = max∂Ω u and the maximum of u is attained on ∂Ω.

2.4 (a) We can compute

∂xv = (∂1u)(x+ a, y + b), ∂2
xv = (∂2

1u)(x+ a, y + b),

∂yv = (∂2u)(x+ a, y + b) and ∂2
yv = (∂2

2u)(x+ a, y + b).

so

∆v(x, y) = ∂2
xv(x, y) + ∂2

yv(x, y)

= (∂2
1u)(x+ a, y + b) + (∂2

2u)(x+ a, y + b) = ∆u(x+ a, y + b) = 0.

(b) We can compute

∂xw(x, y) = cosα(∂1u)(x cosα+ y sinα, y cosα− x sinα)

− sinα(∂2u)(x cosα+ y sinα, y cosα− x sinα), and

∂2
xw(x, y) = cos2 α(∂2

1u)(x cosα+ y sinα, y cosα− x sinα)

− 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

And

∂yw(x, y) = sinα(∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cosα(∂2u)(x cosα+ y sinα, y cosα− x sinα), and

∂2
xw(x, y) = sin2 α(∂2

1u)(x cosα+ y sinα, y cosα− x sinα)

+ 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cos2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)



so

∆w(x, y) = cos2 α(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

− 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cos2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= (cos2 α+ sin2 α)(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ (cos2 α+ sin2 α)(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= (∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ (∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= ∆w(x cosα+ y sinα, y cosα− x sinα) = 0.

2.5 Fix N > 0 and let BN = {x ∈ Rn | |x| < N} be a ball in Rn centred at the origin. Then∫
BN

|u(x, t)|2dx−
∫
BN

|u(x, t0)|2dx =

∫ t

t0

d

ds

(∫
BN

|u(x, s)|2dx
)
ds

=

∫ t

t0

∫
BN

∂

∂s

(
|u(x, s)|2

)
dxds =

∫ t

t0

∫
BN

∂

∂s

(
u(x, s)u(x, s)

)
dxds

=

∫ t

t0

∫
BN

(∂su(x, s)u(x, s) + u(x, s)∂su(x, s)) dxds,

(3)

where the second equality (commuting the derivative and integral) is be justified by our as-
sumptions. From the Schrödinger’s equations, we have that

∂u

∂s
(x, s) =

i~
2m

∆u(x, s) +
ie2

~|x|
u(x, s)

and taking complex conjugates

∂u

∂s
(x, s) = − i~

2m
∆u(x, s)− ie2

~|x|
u(x, s).

Thus

(∂su(x, s))u(x, s) + u(x, s)(∂su(x, s)) =
i~
2m

(∆u(x, s)u(x, s)− u(x, s)∆u(x, s)) .

The divergence theorem tells us∫
BN

((∂su(x, s))u(x, s) + u(x, s)(∂su(x, s))) dx

=

∫
BN

i~
2m

(∆u(x, s)u(x, s)− u(x, s)∆u(x, s)) dx

= − i~
2m

∫
BN

(∇u(x, s) · ∇u(x, s)−∇u(x, s) · ∇u(x, s)) dx

+
i~
2m

∫
∂BN

(
∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)
dσ(x)

=
i~
2m

∫
∂BN

(
∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)
dσ(x).

Substituting this into (3) and using our assumptions about the decay of u, we find∣∣∣∣∫
BN

|u(x, t)|2dx−
∫
BN

|u(x, t0)|2dx
∣∣∣∣

=

∣∣∣∣ i~2m

∫ t

t0

∫
∂BN

(
∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)
dσ(x)ds

∣∣∣∣
≤ C|t− t0|~

2m
|∂BN |(1 +N)−2−ε



where |∂BN | is the area of the set ∂BN and equals 3α(3)N2, where α(3) is the volume of the
unit ball in R3. Thus |∂BN |(1+N)−2−ε = 3α(3)N2(1+N)−2−ε → 0 as N →∞, which proves∫

R3

|u(x, t)|2dx =

∫
R3

|u(x, t0)|2dx = 1,

as required.


