## Partial Differential Equations (TATA27) Spring Semester 2019 Homework 2

## Preparation for the next seminar

In preparation for Seminar 3 read through Chapter 4 and Section 5.1 and attempt the following two problems.

2.1 Let  $\mathbf{R}^2_+ = \mathbf{R} \times (0, \infty)$ ,  $C(\overline{\mathbf{R}^2_+})$  denote the set of continuous real-valued functions on  $\overline{\mathbf{R}^2_+}$  and  $C^1(\mathbf{R}^2_+)$  denote the set of continuously differentiable real-valued functions on  $\mathbf{R}^2_+$ . Consider the boundary-value problem

$$\begin{cases} u_x(x,y) + yu_y(x,y) = 0 & \text{for all } (x,y) \in \mathbf{R}^2_+, \text{ and} \\ u(x,0) = \phi(x) & \text{for all } x \in \mathbf{R}. \end{cases}$$

- (a) Show that if  $\phi(x) = x$  for all  $x \in \mathbf{R}$ , then no solution exists in  $C(\overline{\mathbf{R}^2_+}) \cap C^1(\mathbf{R}^2_+)$ .
- (b) Show that if  $\phi(x) = 1$  for all  $x \in \mathbf{R}$ , then there are many solutions in  $C(\overline{\mathbf{R}^2_+}) \cap C^1(\mathbf{R}^2_+)$ .
- 2.2 Fix  $\ell > 0$  and consider the following boundary-value problem. Given a function  $f: (0, \ell) \to \mathbf{R}$  we wish to find  $u: [0, \ell] \to \mathbf{R}$  which is twice continuously differentiable such that

$$\begin{cases} u''(x) + u'(x) = f(x) & \text{for all } x \in (0, \ell), \text{ and} \\ u'(0) = u(0) = \frac{1}{2}(u'(\ell) + u(\ell)). \end{cases}$$

- (a) Prove that if a solution u exists, it is not unique.
- (b) Find two conditions we must place on f for a solution to exist.

## Group work

We will work on the following exercise at the end of the seminar then we will discuss possible solutions together in Seminar 4.

2.3 Let  $\Omega$  be a bounded open set. Prove that continuous functions  $u: \overline{\Omega} \to \mathbf{R}$  which satisfy

$$\Delta u(\mathbf{x}) + \mathbf{x} \cdot \nabla u(\mathbf{x}) \ge 0$$

for  $\mathbf{x} \in \Omega$  also satisfy the weak maximum principle:

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

## **Review exercises**

Here's a couple of additional exercises for you to try.

2.4 Suppose  $u: \mathbf{R}^2 \to \mathbf{R}$  is a harmonic function.

(a) For constants  $a, b \in \mathbf{R}$  show that  $v \colon \mathbf{R}^2 \to \mathbf{R}$  defined by

$$v(x,y) = u(x+a,y+b)$$
 for all  $x,y \in \mathbf{R}$ 

is harmonic.

(b) For a constant  $\alpha \in \mathbf{R}$  show that  $w \colon \mathbf{R}^2 \to \mathbf{R}$  defined by

$$w(x,y) = u(x\cos\alpha + y\sin\alpha, y\cos\alpha - x\sin\alpha)$$
 for all  $x, y \in \mathbf{R}$ 

is harmonic.

This exercise shows that Laplace's equation in the plane is invariant under rigid motions (translations and rotations).

2.5 The Schrödinger equation is a good model for the behaviour of particles at the atomic and subatomic level. Solutions  $u: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{C}$  are complex-valued and are related to the probability that a particle can be found in a specific region. The equation which models the motion of an electron around a hydrogen nucleus has the form

$$-i\hbar\frac{\partial u}{\partial t}(\mathbf{x},t) = \frac{\hbar^2}{2m}\Delta u(\mathbf{x},t) + \frac{e^2}{|\mathbf{x}|}u(\mathbf{x},t)$$

for real constants  $\hbar$ , m and e and all  $\mathbf{x} \in \mathbf{R}^3$  and  $t \in \mathbf{R}$ . Assume that u and  $\partial_t u$  are continuous functions, and u,  $\partial_t u$  and  $\nabla u$  satisfy the estimate  $|u(\mathbf{x},t)|^2 + |\partial_t u(\mathbf{x},t)|^2 + |\nabla u(\mathbf{x},t)|^2 \leq C(1+|\mathbf{x}|)^{-2-\varepsilon}$  for some  $C, \varepsilon > 0$ , so we can interchange integration and differentiation according to the formula

$$\frac{d}{dt}\int_{B}u(\mathbf{x},t)d\mathbf{x}=\int_{B}\partial_{t}u(\mathbf{x},t)d\mathbf{x}$$

where B is any ball in  $\mathbb{R}^3$  (see *Strauss*, p. 420, for the result for one spatial variable, but the same rule applies in  $\mathbb{R}^3$ ). Show that if

$$\int_{\mathbf{R}^3} |u(\mathbf{x}, t_0)|^2 d\mathbf{x} = 1$$

for some  $t_0 \in \mathbf{R}$ , then

$$\int_{\mathbf{R}^3} |u(\mathbf{x},t)|^2 d\mathbf{x} = 1$$

for all  $t \in \mathbf{R}$ .