
TATA27 29th May 2017

Partial Differential Equations

Comment: All definitions and theorems have been given in lectures. The
remaining content is similar to given homework questions or is work done in
lectures.

1. Use the method of characteristics to find a smooth function u : R2 → R
which solves the equation

xux(x, t) + ut(x, t) + 2u(x, t) = 0 for all (x, t) ∈ R2

and satisfies the condition u(x, 0) = ln(1 + x2) for all x ∈ R. [16 marks]

Solution:
We search for appropriate curves (X,T ) such that the solution on the curves

s 7→ z(s) := u(X(s), T (s)) behaves nicely. We have

z′(s) =
d

ds
u(X(s), T (s)) = X ′(s)∂1u(X(s), T (s)) + T ′(s)∂2u(X(s), T (s)),

so it seems reasonable to set X ′(s) = X(s) and T ′(s) = 1. Thus X(s) = cXe
s

and T (s) = s+ cT for constants cX , cT ∈ R. We can then rewrite the PDE as

z′(s) + 2z(s) = X(s)∂1u(X(s), T (s)) + ∂2u(X(s), T (s)) + 2u(X(s), T (s)) = 0.

This is an ODE with general solution z(s) = Ae−2s for arbitrary A ∈ R.
Now fix (x, t). If we choose cX = x and cT = t, then X(s) = xes and T (s) =

s + t, and when s = 0 the characteristic curve passes through (X(0), T (0)) =
(x, t) and when s = −t the curve passes through (X(−t), T (−t)) = (xe−t, 0).
When s = −t we can use the initial condition to find the value of z:

z(−t) = u(X(−t), T (−t)) = u(xe−t, 0) = ln(1 + (xe−t)2).

But on the other hand, using the form of the general solution to the character-
istic ODE, z(−t) = Ae2t, so A = ln(1 + (xe−t)2)e−2t. Equally, for s = 0,

u(x, t) = z(0) = Ae−2×0 = A = e−2t ln(1 + (xe−t)2),

which gives us an expression for the solution u.

2. Let Ω ⊂ Rn be a bounded open set and b ∈ Rn be a vector which satisfies
b · x + n > 0 for all x ∈ Ω.

(a) Prove that continuous functions u : Ω→ R which solve

∆u(x) + b · ∇u(x) = 0

for x ∈ Ω satisfy the weak maximum principle:

max
Ω

u = max
∂Ω

u.

[Hint: The function x 7→ ε|x|2 for ε > 0 may be useful.] [10 marks]
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(b) Suppose a continuous function g : ∂Ω → R is given. Prove that there
cannot exist more than one continuous function u : Ω → R which solves
the boundary value problem{

∆u+ b · ∇u = 0 in Ω;
u = g on ∂Ω.

[6 marks]

Solution:
For ε > 0 set v(x) = u(x) + ε|x|2. As the sum of two continuous functions,

v is continuous on Ω and so must attain a maximum somewhere in the compact
set Ω = Ω∪∂Ω. We will now rule out the possibility that v attains its maximum
in Ω. Suppose to the contrary that v attains this maximum x ∈ Ω. Then we
know x is a critical point, so ∇v(x) = 0 and, by the second derivative test,
∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. Therefore

∆v(x) + b · ∇v(x) = ∆v(x) + 0 ≤ 0 + 0 = 0.

But on the other hand, we can compute

∆v(x) + b · ∇v(x) = ∆u(x) + b · ∇u(x) + 2εn+ 2εb · x ≥ 2ε(b · x + n) > 0,

via the differential equality u satisfies and the condition on b. These two in-
equalities contradict each other, so v cannot attain its maximum in Ω.

Therefore v must attain its maximum at a point y ∈ ∂Ω. Thus, for any
x ∈ Ω,

u(x) ≤ v(x) ≤ v(y) = u(y) + ε|y|2 ≤ u(y) + εC2 ≤ max
∂Ω

u+ εC2,

where C is the constant obtained from the fact Ω is bounded. Since the above
inequality holds for any ε > 0, we have u(x) ≤ max∂Ω u for any x ∈ Ω, so

max
Ω

u ≤ max
∂Ω

u

Because ∂Ω ⊆ Ω we have that max∂Ω u ≤ maxΩ u and combining these two
inequalities we get that maxΩ u = max∂Ω u and the maximum of u is attained
on ∂Ω.
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3. Let Ω be an open set and φ : Ω→ R. Consider the initial boundary value
problem  ∂tu(x, t)−∆u(x, t) = 0 for x ∈ Ω and t ∈ (0, T ];

u(x, 0) = φ(x) for x ∈ Ω; and
u(y, t) = 0 for y ∈ ∂Ω and t ∈ (0, T ].

(♠)

(a) Show that ∫
Ω

|u(x, t)|2dx

is a decreasing function of t for each u ∈ C2(Ω× [0, T ]) which solves (♠).
[8 marks]

(b) Use (a) to prove there cannot exist more than one function u ∈ C2(Ω ×
[0, T ]) which solves (♠). [8 marks]

Solution:

(a) Using (♠) and Green’s first identity

d

dt

∫
Ω

|u(x, t)|2dx =

∫
Ω

u(x, t)∂tu(x, t)dx =

∫
Ω

u(x, t)∆u(x, t)dx

= −
∫

Ω

∇u(x, t)∇u(x, t)dx = −
∫

Ω

|∇u(x, t)|2dx ≤ 0,

so t 7→
∫

Ω
|u(x, t)|2dx is decreasing.

(b) In particular (a) says

0 ≤
∫
Rn

|u(x, t)|2dx ≤
∫
Rn

|φ(x)|2dx

for all t ∈ [0, T ]. This means that if we had two solutions u1 and u2 of
(♠), then their difference w = u2 − u2 would satsify (♠) with φ = 0, so

0 ≤
∫
Rn

|u2(x, t)− u1(x, t)|2dx =

∫
Rn

|w(x, t)|2dx ≤ 0.

Whence u1 = u2.

4. For a smooth solution u of the wave equation ∂ttu(x, t) − ∂xxu(x, t) = 0,
the energy density is defined to be

e(x, t) =
1

2
((∂tu(x, t))2 + (∂xu(x, t))2)

and the momentum density

p(x, t) = ∂tu(x, t)∂xu(x, t).

(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x. [8 marks]

(b) Show that e and p also satsify the wave equation. [8 marks]
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Solution:

(a) We compute

∂e

∂t
(x, t) = ∂tu(x, t)∂ttu(x, t) + ∂xu(x, t)∂xtu(x, t)

∂e

∂x
(x, t) = ∂tu(x, t)∂txu(x, t) + ∂xu(x, t)∂xxu(x, t)

∂p

∂t
(x, t) = ∂ttu(x, t)∂xu(x, t) + ∂tu(x, t)∂xtu(x, t)

∂p

∂x
(x, t) = ∂txu(x, t)∂xu(x, t) + ∂tu(x, t)∂xxu(x, t)

So clearly if ∂ttu− ∂xxu = 0 then ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x.

(b) Furthermore, using the above results, if ∂ttu− ∂xxu = 0 we have

∂2e

∂t2
(x, t) =

∂2p

∂t∂x
(x, t) =

∂2p

∂x∂t
(x, t) =

∂2e

∂x2
(x, t) and

∂2p

∂t2
(x, t) =

∂2e

∂t∂x
(x, t) =

∂2e

∂x∂t
(x, t) =

∂2p

∂x2
(x, t).

5. Suppose that a solution u to the Schrödinger equation

−i∂tu(x, t) = ∂xxu(x, t)− x2u(x, t)

is of the form u(x, t) = T (t)v(x).

(a) Show that v satisfies the equation

v′′(x) + (λ− x2)v(x) = 0, (♥)

for some constant λ. [6 marks]

(b) We saw in lectures that, by performing the substitution v(x) = w(x)ex
2/2,

it is possible to show (♥) is equivalent to

w′′(x)− 2xw′(x) + (λ− 1)w(x) = 0. (♦)

Show that if w is a power series, that is w(x) =
∑∞

k=0 akx
k, then we must

have
(k + 2)(k + 1)ak+2 = (2k + 1− λ)ak for each k.

[6 marks]

(c) Find a polynomial solution w to (♦) when λ = 9. [4 marks]

Solution:
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(a) Substituting u(x, t) = T (t)v(x) in Schrödinger’s equation and dividing by
T (t)v(x) gives

−iT
′(t)

T (t)
=
v′′(x)− x2

v(x)

Since the left-hand side only depends on t and the right-hand side only
depends on x, both must be equal to −λ, say, for some constant λ. There-
fore

v′′(x) + (λ− x2)v(x) = 0,

for some constant λ.

(b) Substituting this power series in (♦) we get

∞∑
k=0

k(k − 1)akx
k−2 −

∞∑
k=0

2kakx
k + (λ− 1)

∞∑
k=0

akx
k = 0.

Equating powers of x we see a power series solution must satisfy

(k + 2)(k + 1)ak+2 = (2k + 1− λ)ak for each k

and a0 and a1 can be chosen arbitrarily.

(c) A calculation using the recursion relation from (b) shows that up to a
multiplicative constant w(x) = 16x4 − 48x2 + 12.
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