Geometry Second Semester 2010/11 Homework 7

- 1. Find the velocity, acceleration and speed of each of the following parametrised curves $\alpha \colon \mathbf{R} \to \mathbf{R}^{n+1}$.
 - (a) n = 1 and $\alpha(t) = (t, t^2)$,
 - (b) n = 1 and $\alpha(t) = (\cos t, \sin t)$,
 - (c) n = 1 and $\alpha(t) = (\cos 3t, \sin 3t)$,
 - (d) n = 2 and $\alpha(t) = (\cos t, \sin t, t)$, and
 - (e) n = 3 and $\alpha(t) = (\cos t, \sin t, 2\cos t, 2\sin t)$.
- 2. Show that if $\alpha: I \to \mathbf{R}^{n+1}$ is a parametrised curve with constant speed, then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- 3. Let $\alpha: I \to \mathbf{R}^{n+1}$ be a parametrised curve such that $\dot{\alpha}(t) \neq \mathbf{0}$ for all $t \in I$. Show that there exists a unit speed reparametrisation β of α . That is, show that there exists an interval J and a smooth surjective function $h: J \to I$ such that h' > 0 and $\beta = \alpha \circ h$ has unit speed. [Hint: Set $h = s^{-1}$, where $s(t) = \int_{t_0}^t \|\alpha(\tau)\| d\tau$ for some $t_0 \in I$.]
- 4. Let **X** and **Y** be smooth vector fields along the parametrised curve $\alpha: I \to \mathbf{R}^{n+1}$ and let $f: I \to \mathbf{R}$ be a smooth function along α . Verify the following identities, which we claimed to hold in class:
 - (a) $(\mathbf{X} + \mathbf{Y})^{\cdot} = \dot{\mathbf{X}} + \dot{\mathbf{Y}};$
 - (b) $(f\mathbf{X})^{\cdot} = f'\mathbf{X} + f\dot{\mathbf{X}}$; and
 - (c) $(\mathbf{X} \cdot \mathbf{Y})' = \dot{\mathbf{X}} \cdot \mathbf{Y} + \mathbf{X} \cdot \dot{\mathbf{Y}}.$
- 5. Let S be an n-surface in \mathbf{R}^{n+1} , $p \in S$, $\mathbf{v} \in S_p$ and let $\alpha \colon I \to S$ be the maximal geodesic in S passing through p with velocity \mathbf{v} . Show that the maximal geodesic β in S with $\beta(0) = p$ and $\dot{\beta}(0) = c\mathbf{v}$, with $c \in \mathbf{R}$, is give by the formula $\beta(t) = \alpha(ct)$ for all $t \in \tilde{I}$.
- 6. Let $\alpha: I \to S$ be a geodesic on an *n*-surface S and let $\beta = \alpha \circ h$, where $h: \widetilde{I} \to I$ is a smooth surjective function, be a reparametrisation of α . Show that β is a geodesic on S if and only if h(t) = at + b for some $a, b \in \mathbf{R}$ and all $t \in \widetilde{I}$.
- 7. An *n*-surface in \mathbb{R}^{n+1} is said to be *geodesically complete* if every maximal geodesic on S has domain \mathbb{R} . Which of the following *n*-surfaces are geodesically complete?
 - (a) The *n*-sphere $\mathbf{S}^n \subset \mathbf{R}^{n+1}$ (see Example 4.2).
 - (b) $f^{-1}(1) \subset \mathbf{R}^{n+1}$ where $f: U \to \mathbf{R}$ has domain $U = \{(x_1, x_2, \dots, x_{n+1}) | x_{n+1} < 1\}$ and is given by $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + x_2^2 + \dots + x_{n+1}^2$ for each $(x_1, x_2, \dots, x_{n+1}) \in U$. This is the *n*-sphere $\mathbf{S}^n \setminus \{(0, \dots, 0, 1)\}$ with the north pole deleted.
 - (c) $f^{-1}(0) \subset \mathbf{R}^3$ where $f: U \to \mathbf{R}$ has domain $U = \{(x_1, x_2, x_3) | x_3 > 1\}$ and is given by $f(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2$ for each $(x_1, x_2, \dots, x_{n+1}) \in U$. This is a cone with the vertex deleted.
 - (d) The 2-surface S in \mathbb{R}^3 which is the cylinder over the plane curve \mathbb{S}^1 (see Examples 4.2 and 4.5).