Geometry Second Semester 2010/11 Homework 4

- 1. For what values of c is the level set $f^{-1}(c)$ an n-surface for each f given below.
 - (a) $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + x_2^2 + \dots + x_{n+1}^2$
 - (b) $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + x_2^2 + \dots + x_n^2 x_{n+1}^2$
 - (c) $f(x_1, x_2, \dots, x_{n+1}) = x_1 x_2 \dots x_{n+1} + 1$
- 2. Show that the cylinder $\{(x_1, x_2, x_3) | x_1^2 + x_2^2 = 1\} \subset \mathbf{R}^3$ can be represented as the level set of each of the following functions.
 - (a) $f(x_1, x_2, x_3) = x_1^2 + x_2^2$
 - (b) $f(x_1, x_2, x_3) = -x_1^2 x_2^2$
 - (c) $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + \sin(x_1^2 + x_2^2)$
- 3. Show that if an *n*-surface S is represented as both $f^{-1}(c)$ and $g^{-1}(d)$, for smooth functions f and g, and numbers $c, d \in \mathbf{R}$, where $\nabla f(p) \neq \mathbf{0}$ and $\nabla g(p) \neq \mathbf{0}$ for all $p \in S$, then, for each $p \in S$, $\nabla f(p) = \lambda \nabla g(p)$ for some real number $\lambda \neq 0$.
- 4. Sketch the cylinders $f^{-1}(0)$ for the following functions f.
 - (a) $f(x_1, x_2) = x_1$
 - (b) $f(x_1, x_2, x_3) = x_1 x_2^2$
 - (c) $f(x_1, x_2, x_3) = \frac{x_1^2}{4} + \frac{x_2^2}{9} 1$
- 5. Verify that a surface of revolution (see Example 4.6 in your notes) is a 2-surface.
- 6. Sketch the surface of revolution obtained by rotating C about the x_1 -axis, where C is each of the curves defined below.
 - (a) $\{(x_1, x_2) | x_2 = 1\}$ (cylinder)
 - (b) $\{(x_1, x_2) \mid -x_1^2 + x_2^2 = 1, x_2 > 0\}$ (1-sheeted hyperboloid)
 - (c) $\{(x_1, x_2) | x_1^2 + (x_2 2)^2 = 1\}$ (torus)
- 7. Show that the set S of all unit vectors at all points in \mathbb{R}^2 forms a 3-surface in \mathbb{R}^4 . Hint: $S = \{(x_1, x_2, x_3, x_4) | x_3^2 + x_4^2 = 1\}.$
- 8. Let $S = f^{-1}(c)$ be a 2-surface in \mathbb{R}^3 which lies in the half-space $\{(x_1, x_2, x_3) | x_3 > 0\}$. Find a function $g: U \to \mathbb{R}$ (where U an open set in \mathbb{R}^4) such that $g^{-1}(c)$ is the 3-surface obtained by rotating the 2-surface S about the (x_1, x_2) -plane.
- 9. Let $a, b, c \in \mathbf{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse $\{(x_1, x_2) | ax_1^2 + 2bx_1x_2 + cx_2^2 = 1\}$ are of the form $1/\lambda_1$ and $1/\lambda_2$, where λ_1 and λ_2 are the eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.
- 10. Let S be an n-surface in \mathbb{R}^{n+1} and let $p_0 \in \mathbb{R}^{n+1} \setminus S$. Show that the shortest line segment from p_0 to S (if one exists) is perpendicular to S. That is, show that if $p \in S$ is such that $\|p_0 - p\|^2 \leq \|p_0 - q\|^2$ for all $q \in S$, then $(p, p_0 - p) \perp S_p$. [Hint: Use the Lagrange Multiplier Theorem.] Show that the same conclusion holds for the longest line segment from p_0 to S (again, if one exists).
- 11. The set \mathbf{R}^4 may be viewed as the set of all 2×2 matrices with real entries by identifying the quadruple (x_1, x_2, x_3, x_4) with the matrix

$$\left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right).$$

The subset consisting of those matrices with determinant equal to one forms a group under matrix multiplication, this group is called the special linear group SL(2). Show that SL(2) is a 3-surface in \mathbb{R}^4 .

$$A = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right)$$

is defined to be $tr(A) := x_1 + x_4$. Show that the tangent space $SL(2)_p$ to SL(2) (see Question 11) at $p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ can be identified with the set of all 2×2 matrices of trace zero by showing that

$$SL(2)_p = \left\{ \left(p, \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) \right) \ \Big| \ x_1 + x_4 = 0 \right\}.$$

[Hint: First show that if

$$\alpha(t) = \left(\begin{array}{cc} x_1(t) & x_2(t) \\ x_3(t) & x_4(t) \end{array}\right)$$

is a parametrised curve in SL(2) with $\alpha(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then $x'_1(0) + x'_4(0) = 0$. Use a dimensional argument to prove the opposite inclusion.]