Geometry Second Semester 2011/12 Homework 9

1. Let $\alpha: I \to C$ be a local parametrisation of the oriented curve C of the form $\alpha(t) = (x(t), y(t))$. Show that

$$(\kappa \circ \alpha)(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{\frac{3}{2}}}$$

- 2. Find global parametrisations of $f^{-1}(0)$ oriented by $\nabla f / \|\nabla f\|$ in each of the following cases:
 - (a) $f(x_1, x_2) = ax_1 + bx_2 c$ with $(a, b) \neq (0, 0)$;
 - (b) $f(x_1, x_2) = x_1^2/a^2 + x_2^2/b^2 1$ with $a, b \neq 0$;
 - (c) $f(x_1, x_2) = x_2 ax_1^2 1$ with $a \neq 0$; and
 - (d) $f(x_1, x_2) = x_1^2 x_2^2 1$ defined for $x_1 > 0$.
- 3. Find the curvature of each of the oriented plane curves in Exercise 2.
- 4. Let C be a plane curve oriented by the unit normal vector field **n**. Let $\alpha: I \to C$ be a unit speed local parametrisation for C. For $t \in I$, let $\mathbf{T}(t) = \dot{\alpha}(t)$. Show that

$$\begin{cases} \dot{\mathbf{T}} = (\kappa \circ \alpha)(\mathbf{n} \circ \alpha), & \text{and} \\ (\mathbf{n} \circ \alpha)^{\cdot} = -(\kappa \circ \alpha)\mathbf{T}. \end{cases}$$

These formulae are called the *Frenet formulae* for a plane curve.

5. Let $S = f^{-1}(c)$ be an *n*-surface in \mathbb{R}^{n+1} oriented by $\nabla f / \|\nabla f\|$. For $\mathbf{v} = (p, v_1, v_2, \dots, v_{n+1}) \in S_p$, with $p \in S$, we define the second fundamental form of S at p on \mathbf{v} to be $\mathscr{S}_p(\mathbf{v}) := L_p(\mathbf{v}) \cdot \mathbf{v}$. Show that

$$\mathscr{S}_p(\mathbf{v}) = \frac{-1}{\|\nabla f\|} \sum_{i,j=1}^{n+1} \partial_{i,j}^2 f(p) v_i v_j.$$

(When $\|\mathbf{v}\| = 1$, then $k(\mathbf{v}) = \mathscr{S}_p(\mathbf{v})$, so this formula provides a useful way to compute normal curvatures.)

- 6. Find the normal curvature $k(\mathbf{v})$ for each direction \mathbf{v} , the principal curvatures and principal curvature directions at the point p for the 3-surface $f^{-1}(0)$ oriented by $\nabla f/||\nabla f||$ in each of the following cases.
 - (a) $f(x_1, x_2, x_3) = x_1^2/a^2 + x_2^2/b^2 + x_3^2/c^2 1, p = (a, 0, 0)$ (b) $f(x_1, x_2, x_3) = x_1^2/a^2 + x_2^2/b^2 - x_3^2/c^2 - 1, p = (a, 0, 0)$ (c) $f(x_1, x_2, x_3) = x_1^2 + (\sqrt{x_2^2 + x_3^2} - 2)^2 - 1,$ i. p = (0, 3, 0)ii. p = (0, 1, 0)