F11PG2 May 2011

Geometry

Comment: All definitions and theorems have been given in lectures (except
Question 5). The remaining content of Questions 2 and 4 have been seen in
homework. The remaining content of Question 1 and 3(b) is similar to given
homework questions and 3(d) was done in lectures. Question 5 is from Chapter
11 of Thorpe, which was given as reading to the fifth years, (a) and (b) are
stated and proved in that chapter, (c) is an expanded version of a homework
question in that chapter.

1.

(a) Given a smooth vector field X on an open set U C R"*!, define the notion
of an integral curve of X. [3 marks]

(b) State precisely a theorem regarding the existence and uniqueness of max-
imal integral curves of a smooth vector field X on an open set U C R"*+!
through a point p € U. [7 marks]

(c) A vector field X on R? is defined by X(q) = (¢, —¢q/3) for all ¢ € R?.

(i) Sketch the vector field X. [2 marks]

(ii) Show that finding an integral curve a: I — R? of X through p € R?
is equivalent to solving the first order system

2'(t) = —z(t)/3
y'(t)=—y()/3

subject to the initial conditions z(0) = p; and y(0) = pa, where
p = (p1,p2). [3 marks]

(iii) Either by solving the system above, or by some other method, find
the maximal integral curve of X through p for all p € R2.
[3 marks]

(iv) Is the vector field X complete? Justify your answer. [2 marks]

Solution:

(a) A parametrised curve a: I — R"! (1 mark) is said to be an integral
curve of the vector field X on the open set U C R if a(t) € U (1
mark) and &(t) = X(«(t)) (1 mark) for all ¢ € I. Thus « has the
property that its velocity vector at each point coincides with the value of
the vector field X at the same point.

(b) Theorem. Let X be a smooth vector field on an open set U C Rt and
let p € U (1 mark). Then there exists an open interval I containing 0
and an integral curve a.: I — U of X such that (2 marks)

(i) «(0) =p (2 marks), and

(ii) If 5: I — U is any other integral curve of X (for some open interval
I) with 8(0) = p, then I C I and 3(t) = «a(¢) for all ¢ € I (2 marks).



The integral curve « is called the mazimal integral curve of X through p,
or the integral curve of X through p, for short (0 marks).

(¢) (i) Arrows pointing towards the origin (1 mark) decreasing in length
(linearly) as they get closer to the origin (1 mark).
(ii) The parametrised curve a: I — R? needs to satisfy &(t) = X(a(t))
with 0 € I and «a(0) = p (1 mark). Writing out the components of
this with o = (z, y) gives

a'(t) = —2(t)/3
y'(t) = —y(t)/3
with z(0) = p; and y(0) = pa, where p = (p1,p2) (2 marks).

(iii) Using, for example, matrix exponentials or simply inspection, we can
see that x(t) = ae~¥/3 and y(t) = be~t/3, for constants a,b € R (2
marks). The initial condition means that a = p; and b = pa, so
x(t) = pre” 3 and y(t) = pee™ /3 for all t € R and hence a(t) =
(pre~ 3, pae=t/3) for all t € R (1 mark).

(iv) Since a found above has domain equal to R for each p € R? (1
mark), X is complete (1 mark).

(a) Define what it means for S to be an n-surface in R"*1. [4 marks]

(b) For p € S, state the definition of S, the tangent space of S at p.
[4 marks]

(c) The set R* may be viewed as the set of all 2 x 2 matrices with real entries
by identifying the quadruple (x1,x2, x3, z4) with the matrix

Tl T2
r3 T4 )

The subset consisting of those matrices with determinant equal to one
forms a group under matrix multiplication, this group is called the special
linear group SL(2).

(i) Show that SL(2) is a 3-surface in R*. [Hint: The determinant of the
matrix above is z1x4 — T223.] [5 marks]

P

r3 X4
is defined to be tr(A) := x1+x4. Show that the tangent space SL(2),
to SL(2) at p = ( (1) (1) > can be identified with the set of all 2 x 2

matrices of trace zero by showing that

SL(2)p—{< ,( i; Z )> ’x1+x4—0}.

[7 marks]

(ii) The trace of a matrix



Solution:

(a) A surface of dimension n or an n-surface in R"*! is a non-empty subset S
of R"! (1 mark) of the form S = f~!(c) (1 marks), where f: U — R
is a smooth function on an open set U C R™*! with the property that
Vf(p) # 0 for all p € S (2 marks).

(b) The tangent space S is the set of all vectors v € RZ“ that are velocity
vectors of parametrised curves in S (2 marks) passing through p (2
marks). Alternatively, S, = (Vf(p))* by Theorem 3.4 (4 marks).

(¢) (i) Set
f(@1, 2,3, 4) = 2124 — T2w3
for all (z1, T, x3,74) € R* Then SL(2) = f~1(1) (2 marks) and we

must check that V f(z1, x2,z3,x4) # 0 for all (z1, z2,x3,24) € SL(2)
(1 mark). Indeed,

vf(xl7x25z3ax4) = (I1,$27x3,x4,l’4, —I3, 71’2;'1:1)

which is zero exactly when x4 = 23 = 2o = 21 = 0. As (0,0,0,0) &
f~Y(1) = SL(2), we have that V f(x1, 72, x3,74) # 0 for all (z1, z2, 73, 74) €
SL(2), as required (2 marks).

(ii) We know that f(«(t)) =1 (1 mark), so
0= (foa)(t)=d(t)as(t) + ar(t)a)(t) — ay(t)as(t) — aa(t)aj(t)
(2 marks) and consequently

0= (foa)(0)=a1(0) +a}(0).

(1 mark) From this we conclude a tangent vector of SL(2) at p =
( (1) (1) ) can be identified with a 2 x 2 matrix of trace zero (1
mark). However, we know that SL(2), is a three dimensional vector
space, since SL(2) is a 3-surface, and 2 x 2 matrices of trace zero are
also a three dimensional vector space (under addition of matrices and
multiplication by scalars), so SL(2), equals the set of 2 x 2 matrices
of trace zero (2 marks).

(a) Define the Gauss map for an n-surface S with orientation n. [2 marks]

(b) Sketch the image of the Gauss map N for the 1-surface f~1(0) with ori-
entation Vf/||V f| when f is given as follows.

(i) f(z1,79) = 29 — 23 for all (z1,22) € R?, and [2 marks]
(i) f(x1,22) = 21 for all (21, 75) € R2 [2 marks]

(c) State precisely a theorem regarding the Gauss map that gives a condition
under which it is surjective. [5 marks]



(d) Let S = f~1(0) be an oriented n-surface with orientation

n=(,N())=V[/IVS]

for some smooth f: R"t! — R, let p1,p2 € S and g € S™. Suppose that
there exists a continuous function a: [a,b] — R"*!, differentiable at a
and b, such that

(i) ala) = p1, a(b) = pa, &(a) = (p1,q) and &(b) = (p2,q), and

(ii) a(t) ¢ S fora <t <b.

Prove that N(p1) # N(p2). [Hint: Consider f o a.] [9 marks]

Solution:

(a) The Gauss map is the ‘arrow part’ of n. That is for n = (-, N(-)), the
Gauss map is N: § — S™. (2 marks)

(b) (i) It is the ‘northern hemisphere’ of S* (2 marks).

(ii) It is the point ‘due east’ from the centre of S! (2 marks).

(¢) Theorem. Let S be a compact (3 marks) connected (2 marks) oriented
n-surface in R"*! (so we can write S = f~1(c) for some smooth function
f: R"! — R with Vf(p) # 0 for all p € S and ¢ € R) with orientation
n = (-, N(-)). Then the Gauss map N maps S onto the n-sphere (that is,
the Gauss map N: S — S™ is surjective).

(d) By (i), we have that

(foa)(a) =Vf(ala)) - ala)=[IVf(p1)ln(p1) - (p1,9),

(2 marks) and, similarly

(f o) (b) = IV f(p2)lIn(p2) - (p2,9)

(1 mark). Thus, if N(p1) = N(p2), then n(p1) - (p1,9) = n(p2) - (p2,9),
and so (by the above) (f o &)’ has the same sign at both end points.
From this it follows that (f o «) is either increasing at both end-points
or decreasing at both end points (2 mark). Consequently, using the fact
that (foa)(a) = (foa)(b) = 0, we know there exist ¢, t3 € (a,b) such that
(foa)(ty) >0and (foa)(tz) < 0 (2 marks), and so by the Intermediate
Value Theorem, there exists a number t3 € (a,b) such that (foa)(t3) =0
(2 marks). This contradicts (ii), so it must be that N(p1) # N(p2).

(a) Let S be an oriented n-surface with orientation n. Define the Weingarten
map L, forape S. [5 marks]

(b) State precisely a theorem which relates the value of the Weingarten map
L,(v) at v € S, and the acceleration of a parametrised curve a: I — S
with velocity &(tg) = v. [7 marks]



(c¢) Show that all integral curves of a smooth tangent vector field X on S are
geodesics if and only if Vx(,) X(p) L S, for all p € S. [8 marks]

Solution:
(a) The linear map L,: S, — S, defined by
Lyp(v) = =Vyn(p)

is called the Weingarten map of the oriented n-surface S (with orientation
n) at p (5 marks).

(b) Theorem. Let S be an n-surface in R"*! with orientation n. Let p € S
and v € S,. Then for every parametrised curve a: I — § with &(tg) =v
for some ty € I (and in particular a(ty) = p) (3 marks),

(to) - 1(p) = Ly(v) - v
(4 marks).

(¢) An integral curve of X through p is a parametrised curve such that «(0) =
p and &(t) = X(«(t)) for all ¢ in the domain of «, so

a(t) = (Xoa)(t) = Vxu)X(a(t))

(2 marks). Therefore ci(t) L S, if and only if Vx (o) X(a(t)) L San)
(2 marks). Consequenly, if Vx,)X(p) L S, for all p € S, then every
integral curve « is a geodesic (2 marks). Conversely, for fixed p € S let
a be the integral curve through p, then &(0) = Vx ) X(p), and if « is a
geodesic Vx(,)X(p) L S, (2 marks).

5.
The length () of a parametrised curve a: (a,b) — R"*! is defined to be

b
to) = / ()t
where —0o < a < b < 0.

(a) For —0o < ¢ < d < o0, suppose that 8 = « o h, where h: [¢,d] — [a,b] is
a continuous function such that A/(t) > 0 for all ¢ € (¢,d), h(c) = a and
h(d) = b. Show that £(a) = £(). [6 marks]

(b) State precisely a theorem which gives a dichotomy of unit speed global
parametrisations of connected oriented plane curves. Which alternative
occurs for compact plane curves? [5 marks]

(¢) Let C be a connected oriented plane curve with orientation n, let a: I — C
be a one-to-one unit speed parametrisation of C' and let x: C' — R denote
curvature on C. Show that

(koa)(t)=—a-(noa)(t)



and use this to show that

b
/ |(koa)(t)|dt = ¢(N o ),

where a and b are the end-points of I, and N: C — S! ¢ R? is the Gauss
map of C. [9 marks]

Solution:

(a)

d d
8) = / 13t |t = / (o BY(1)l|dt
d
- / | ((E)R (1)l dt = /||a DIIA (t)dt
b
- / lé(e) |t = £(a).

(b) Theorem. Let C be a connected oriented plane curve and let 3: I — C
be a unit speed global parametrisation of C. Then [ is either one-to-one
or periodic (3 marks). Moreover, 3 is periodic if and only if C' is compact
(2 marks).

(c) First

(6 marks)

(ko a)(t) = a(t) - n(a(t))
(2 marks) and
a(t) -n(a(t) = (& (nea))(t) —é- (noa)(t) = —a- (noa)(t),
(1 mark) where n is the orientation of C, so
(ko a)(t) = —é - (noa)(t)

But

—(moa)(t) = —Vamyn(a(t)) = Law)(a(t)) € Co)-
(2 marks) Moreover, Cy) is 1-dimensional, &(t) € Cy ) and || (t)]| = 1
so | —d-(noa)(t)) = ||Vapn(a(t))| (2 marks). Finally,

Vamn(a(t)) = (N oa)(?),

)

(1 mark) so
(N oa)= /||Noa)()||dt
b
= [ 1Faonteyie = [~ a- moayar

:/ (0 ) (8)|dt.

(1 mark).




