
F11PG2 May 2011

Geometry

Comment: All definitions and theorems have been given in lectures (except
Question 5). The remaining content of Questions 2 and 4 have been seen in
homework. The remaining content of Question 1 and 3(b) is similar to given
homework questions and 3(d) was done in lectures. Question 5 is from Chapter
11 of Thorpe, which was given as reading to the fifth years, (a) and (b) are
stated and proved in that chapter, (c) is an expanded version of a homework
question in that chapter.

1.

(a) Given a smooth vector field X on an open set U ⊆ Rn+1, define the notion
of an integral curve of X. [3 marks]

(b) State precisely a theorem regarding the existence and uniqueness of max-
imal integral curves of a smooth vector field X on an open set U ⊆ Rn+1

through a point p ∈ U . [7 marks]

(c) A vector field X on R2 is defined by X(q) = (q,−q/3) for all q ∈ R2.

(i) Sketch the vector field X. [2 marks]

(ii) Show that finding an integral curve α : I → R2 of X through p ∈ R2

is equivalent to solving the first order system{
x′(t) = −x(t)/3
y′(t) = −y(t)/3

subject to the initial conditions x(0) = p1 and y(0) = p2, where
p = (p1, p2). [3 marks]

(iii) Either by solving the system above, or by some other method, find
the maximal integral curve of X through p for all p ∈ R2.

[3 marks]

(iv) Is the vector field X complete? Justify your answer. [2 marks]

Solution:

(a) A parametrised curve α : I → Rn+1 (1 mark) is said to be an integral
curve of the vector field X on the open set U ⊂ Rn+1 if α(t) ∈ U (1
mark) and α̇(t) = X(α(t)) (1 mark) for all t ∈ I. Thus α has the
property that its velocity vector at each point coincides with the value of
the vector field X at the same point.

(b) Theorem. Let X be a smooth vector field on an open set U ⊂ Rn+1 and
let p ∈ U (1 mark). Then there exists an open interval I containing 0
and an integral curve α : I → U of X such that (2 marks)

(i) α(0) = p (2 marks), and

(ii) If β : Ĩ → U is any other integral curve of X (for some open interval
Ĩ) with β(0) = p, then Ĩ ⊂ I and β(t) = α(t) for all t ∈ Ĩ (2 marks).
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The integral curve α is called the maximal integral curve of X through p,
or the integral curve of X through p, for short (0 marks).

(c) (i) Arrows pointing towards the origin (1 mark) decreasing in length
(linearly) as they get closer to the origin (1 mark).

(ii) The parametrised curve α : I → R2 needs to satisfy α̇(t) = X(α(t))
with 0 ∈ I and α(0) = p (1 mark). Writing out the components of
this with α = (x, y) gives{

x′(t) = −x(t)/3
y′(t) = −y(t)/3

with x(0) = p1 and y(0) = p2, where p = (p1, p2) (2 marks).
(iii) Using, for example, matrix exponentials or simply inspection, we can

see that x(t) = ae−t/3 and y(t) = be−t/3, for constants a, b ∈ R (2
marks). The initial condition means that a = p1 and b = p2, so
x(t) = p1e

−t/3 and y(t) = p2e
−t/3 for all t ∈ R and hence α(t) =

(p1e
−t/3, p2e

−t/3) for all t ∈ R (1 mark).
(iv) Since α found above has domain equal to R for each p ∈ R2 (1

mark), X is complete (1 mark).

2.

(a) Define what it means for S to be an n-surface in Rn+1. [4 marks]

(b) For p ∈ S, state the definition of Sp, the tangent space of S at p.
[4 marks]

(c) The set R4 may be viewed as the set of all 2×2 matrices with real entries
by identifying the quadruple (x1, x2, x3, x4) with the matrix(

x1 x2

x3 x4

)
.

The subset consisting of those matrices with determinant equal to one
forms a group under matrix multiplication, this group is called the special
linear group SL(2).

(i) Show that SL(2) is a 3-surface in R4. [Hint: The determinant of the
matrix above is x1x4 − x2x3.] [5 marks]

(ii) The trace of a matrix

A =
(

x1 x2

x3 x4

)
is defined to be tr(A) := x1+x4. Show that the tangent space SL(2)p

to SL(2) at p =
(

1 0
0 1

)
can be identified with the set of all 2× 2

matrices of trace zero by showing that

SL(2)p =
{(

p,

(
x1 x2

x3 x4

)) ∣∣∣ x1 + x4 = 0
}

.

[7 marks]
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Solution:

(a) A surface of dimension n or an n-surface in Rn+1 is a non-empty subset S
of Rn+1 (1 mark) of the form S = f−1(c) (1 marks), where f : U → R
is a smooth function on an open set U ⊂ Rn+1 with the property that
∇f(p) 6= 0 for all p ∈ S (2 marks).

(b) The tangent space Sp is the set of all vectors v ∈ Rn+1
p that are velocity

vectors of parametrised curves in S (2 marks) passing through p (2
marks). Alternatively, Sp = (∇f(p))⊥ by Theorem 3.4 (4 marks).

(c) (i) Set
f(x1, x2, x3, x4) = x1x4 − x2x3

for all (x1, x2, x3, x4) ∈ R4. Then SL(2) = f−1(1) (2 marks) and we
must check that ∇f(x1, x2, x3, x4) 6= 0 for all (x1, x2, x3, x4) ∈ SL(2)
(1 mark). Indeed,

∇f(x1, x2, x3, x4) = (x1, x2, x3, x4, x4,−x3,−x2, x1)

which is zero exactly when x4 = x3 = x2 = x1 = 0. As (0, 0, 0, 0) 6∈
f−1(1) = SL(2), we have that∇f(x1, x2, x3, x4) 6= 0 for all (x1, x2, x3, x4) ∈
SL(2), as required (2 marks).

(ii) We know that f(α(t)) = 1 (1 mark), so

0 = (f ◦ α)′(t) = α′1(t)α4(t) + α1(t)α′4(t)− α′2(t)α3(t)− α2(t)α′3(t)

(2 marks) and consequently

0 = (f ◦ α)′(0) = α′1(0) + α′4(0).

(1 mark) From this we conclude a tangent vector of SL(2) at p =(
1 0
0 1

)
can be identified with a 2 × 2 matrix of trace zero (1

mark). However, we know that SL(2)p is a three dimensional vector
space, since SL(2) is a 3-surface, and 2× 2 matrices of trace zero are
also a three dimensional vector space (under addition of matrices and
multiplication by scalars), so SL(2)p equals the set of 2× 2 matrices
of trace zero (2 marks).

3.

(a) Define the Gauss map for an n-surface S with orientation n. [2 marks]

(b) Sketch the image of the Gauss map N for the 1-surface f−1(0) with ori-
entation ∇f/‖∇f‖ when f is given as follows.

(i) f(x1, x2) = x2 − x2
1 for all (x1, x2) ∈ R2, and [2 marks]

(ii) f(x1, x2) = x1 for all (x1, x2) ∈ R2. [2 marks]

(c) State precisely a theorem regarding the Gauss map that gives a condition
under which it is surjective. [5 marks]
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(d) Let S = f−1(0) be an oriented n-surface with orientation

n = (·, N(·)) = ∇f/‖∇f‖

for some smooth f : Rn+1 → R, let p1, p2 ∈ S and q ∈ Sn. Suppose that
there exists a continuous function α : [a, b] → Rn+1, differentiable at a
and b, such that

(i) α(a) = p1, α(b) = p2, α̇(a) = (p1, q) and α̇(b) = (p2, q), and

(ii) α(t) 6∈ S for a < t < b.

Prove that N(p1) 6= N(p2). [Hint: Consider f ◦ α.] [9 marks]

Solution:

(a) The Gauss map is the ‘arrow part’ of n. That is for n = (·, N(·)), the
Gauss map is N : S → Sn. (2 marks)

(b) (i) It is the ‘northern hemisphere’ of S1 (2 marks).

(ii) It is the point ‘due east’ from the centre of S1 (2 marks).

(c) Theorem. Let S be a compact (3 marks) connected (2 marks) oriented
n-surface in Rn+1 (so we can write S = f−1(c) for some smooth function
f : Rn+1 → R with ∇f(p) 6= 0 for all p ∈ S and c ∈ R) with orientation
n = (·, N(·)). Then the Gauss map N maps S onto the n-sphere (that is,
the Gauss map N : S → Sn is surjective).

(d) By (i), we have that

(f ◦ α)′(a) = ∇f(α(a)) · α̇(a) = ‖∇f(p1)‖n(p1) · (p1, q),

(2 marks) and, similarly

(f ◦ α)′(b) = ‖∇f(p2)‖n(p2) · (p2, q)

(1 mark). Thus, if N(p1) = N(p2), then n(p1) · (p1, q) = n(p2) · (p2, q),
and so (by the above) (f ◦ α)′ has the same sign at both end points.
From this it follows that (f ◦ α) is either increasing at both end-points
or decreasing at both end points (2 mark). Consequently, using the fact
that (f ◦α)(a) = (f ◦α)(b) = 0, we know there exist t1, t2 ∈ (a, b) such that
(f ◦α)(t1) > 0 and (f ◦α)(t2) < 0 (2 marks), and so by the Intermediate
Value Theorem, there exists a number t3 ∈ (a, b) such that (f ◦α)(t3) = 0
(2 marks). This contradicts (ii), so it must be that N(p1) 6= N(p2).

4.

(a) Let S be an oriented n-surface with orientation n. Define the Weingarten
map Lp for a p ∈ S. [5 marks]

(b) State precisely a theorem which relates the value of the Weingarten map
Lp(v) at v ∈ Sp and the acceleration of a parametrised curve α : I → S
with velocity α̇(t0) = v. [7 marks]
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(c) Show that all integral curves of a smooth tangent vector field X on S are
geodesics if and only if ∇X(p)X(p) ⊥ Sp for all p ∈ S. [8 marks]

Solution:

(a) The linear map Lp : Sp → Sp defined by

Lp(v) = −∇vn(p)

is called the Weingarten map of the oriented n-surface S (with orientation
n) at p (5 marks).

(b) Theorem. Let S be an n-surface in Rn+1 with orientation n. Let p ∈ S
and v ∈ Sp. Then for every parametrised curve α : I → S with α̇(t0) = v
for some t0 ∈ I (and in particular α(t0) = p) (3 marks),

α̈(t0) · n(p) = Lp(v) · v

(4 marks).

(c) An integral curve of X through p is a parametrised curve such that α(0) =
p and α̇(t) = X(α(t)) for all t in the domain of α, so

α̈(t) = (X ◦ α)˙(t) = ∇X(α(t))X(α(t))

(2 marks). Therefore α̈(t) ⊥ Sα(t) if and only if ∇X(α(t))X(α(t)) ⊥ Sα(t)

(2 marks). Consequenly, if ∇X(p)X(p) ⊥ Sp for all p ∈ S, then every
integral curve α is a geodesic (2 marks). Conversely, for fixed p ∈ S let
α be the integral curve through p, then α̈(0) = ∇X(p)X(p), and if α is a
geodesic ∇X(p)X(p) ⊥ Sp (2 marks).

5.
The length `(α) of a parametrised curve α : (a, b) → Rn+1 is defined to be

`(α) =
∫ b

a

‖α̇(t)‖dt,

where −∞ < a < b < ∞.

(a) For −∞ < c < d < ∞, suppose that β = α ◦ h, where h : [c, d] → [a, b] is
a continuous function such that h′(t) > 0 for all t ∈ (c, d), h(c) = a and
h(d) = b. Show that `(α) = `(β). [6 marks]

(b) State precisely a theorem which gives a dichotomy of unit speed global
parametrisations of connected oriented plane curves. Which alternative
occurs for compact plane curves? [5 marks]

(c) Let C be a connected oriented plane curve with orientation n, let α : I → C
be a one-to-one unit speed parametrisation of C and let κ : C → R denote
curvature on C. Show that

(κ ◦ α)(t) = −α̇ · (n ◦ α)˙(t)
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and use this to show that∫ b

a

|(κ ◦ α)(t)|dt = `(N ◦ α),

where a and b are the end-points of I, and N : C → S1 ⊂ R2 is the Gauss
map of C. [9 marks]

Solution:

(a)

`(β) =
∫ d

c

‖β̇(t)‖dt =
∫ d

c

‖(α ◦ h)˙(t)‖dt

=
∫ d

c

‖α̇(h(t))h′(t)‖dt =
∫ d

c

‖α̇(h(t))‖h′(t)dt

=
∫ b

a

‖α̇(t)‖dt = `(α).

(6 marks)

(b) Theorem. Let C be a connected oriented plane curve and let β : I → C
be a unit speed global parametrisation of C. Then β is either one-to-one
or periodic (3 marks). Moreover, β is periodic if and only if C is compact
(2 marks).

(c) First
(κ ◦ α)(t) = α̈(t) · n(α(t))

(2 marks) and

α̈(t) · n(α(t)) = (α̇ · (n ◦ α))′(t)− α̇ · (n ◦ α)˙(t) = −α̇ · (n ◦ α)˙(t),

(1 mark) where n is the orientation of C, so

(κ ◦ α)(t) = −α̇ · (n ◦ α)˙(t).

But
−(n ◦ α)˙(t) = −∇α̇(t)n(α(t)) = Lα(t)(α̇(t)) ∈ Cα(t).

(2 marks) Moreover, Cα(t) is 1-dimensional, α̇(t) ∈ Cα(t) and ‖α̇(t)‖ = 1,
so | − α̇ · (n ◦ α)˙(t)| = ‖∇α̇(t)n(α(t))‖ (2 marks). Finally,

∇α̇(t)n(α(t)) = (N ◦ α)˙(t),

(1 mark) so

`(N ◦ α) =
∫ b

a

‖(N ◦ α)˙(t)‖dt

=
∫ b

a

‖∇α̇(t)n(α(t))‖dt =
∫ b

a

| − α̇ · (n ◦ α)˙(t)|dt

=
∫ b

a

|(κ ◦ α)(t)|dt.

(1 mark).
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