- (1) (a) Given a smooth vector field \mathbf{X} on an open set $U \subseteq \mathbf{R}^{n+1}$, define the notion of an integral curve of \mathbf{X} . [3 marks]
 - (b) State precisely a theorem regarding the existence and uniqueness of maximal integral curves of a smooth vector field \mathbf{X} on an open set $U \subseteq \mathbf{R}^{n+1}$ through a point $p \in U$. [7 marks]
 - (c) A vector field **X** on \mathbb{R}^2 is defined by $\mathbf{X}(q) = (q, -q/3)$ for all $q \in \mathbb{R}^2$.
 - (i) Sketch the vector field **X**. [2 marks]
 - (ii) Show that finding an integral curve $\alpha \colon I \to \mathbf{R}^2$ of \mathbf{X} through $p \in \mathbf{R}^2$ is equivalent to solving the first order system

$$\begin{cases} x'(t) = -x(t)/3\\ y'(t) = -y(t)/3 \end{cases}$$

subject to the initial conditions $x(0) = p_1$ and $y(0) = p_2$, where $p = (p_1, p_2)$. [3 marks]

- (iii) Either by solving the system above, or by some other method, find the maximal integral curve of X through p for all $p \in \mathbb{R}^2$. [3 marks]
- (iv) Is the vector field **X** complete? Justify your answer. [2 marks]
- (2) (a) Define what it means for S to be an n-surface in \mathbb{R}^{n+1} . [4 marks]
 - (b) For $p \in S$, state the definition of S_p , the tangent space of S at p. [4 marks]
 - (c) The set \mathbf{R}^4 may be viewed as the set of all 2×2 matrices with real entries by identifying the quadruple (x_1, x_2, x_3, x_4) with the matrix

$$\left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right).$$

The subset consisting of those matrices with determinant equal to one forms a group under matrix multiplication, this group is called the special linear group SL(2).

- (i) Show that SL(2) is a 3-surface in \mathbb{R}^4 . [Hint: The determinant of the matrix above is $x_1x_4 x_2x_3$.] [5 marks]
- (ii) The trace of a matrix

$$A = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right)$$

is defined to be $\operatorname{tr}(A) := x_1 + x_4$. Show that the tangent space $SL(2)_p$ to SL(2) at $p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ can be identified with the set of all 2×2 matrices of trace zero by showing that

$$SL(2)_p = \left\{ \left(p, \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \right) \mid x_1 + x_4 = 0 \right\}.$$

[7 marks]

- (3) (a) Define the Gauss map for an n-surface S with orientation \mathbf{n} . [2 marks]
 - (b) Sketch the image of the Gauss map N for the 1-surface $f^{-1}(0)$ with orientation $\nabla f/\|\nabla f\|$ when f is given as follows.

(i)
$$f(x_1, x_2) = x_2 - x_1^2$$
 for all $(x_1, x_2) \in \mathbf{R}^2$, and [2 marks]

(ii)
$$f(x_1, x_2) = x_1$$
 for all $(x_1, x_2) \in \mathbf{R}^2$. [2 marks]

- (c) State precisely a theorem regarding the Gauss map that gives a condition under which it is surjective. [5 marks]
- (d) Let $S = f^{-1}(0)$ be an oriented n-surface with orientation

$$\mathbf{n} = (\cdot, N(\cdot)) = \nabla f / \|\nabla f\|$$

for some smooth $f: \mathbf{R}^{n+1} \to \mathbf{R}$, let $p_1, p_2 \in S$ and $q \in \mathbf{S}^n$. Suppose that there exists a continuous function $\alpha: [a, b] \to \mathbf{R}^{n+1}$, differentiable at a and b, such that

(i)
$$\alpha(a) = p_1$$
, $\alpha(b) = p_2$, $\dot{\alpha}(a) = (p_1, q)$ and $\dot{\alpha}(b) = (p_2, q)$, and

(ii)
$$\alpha(t) \notin S$$
 for $a < t < b$.

Prove that
$$N(p_1) \neq N(p_2)$$
. [Hint: Consider $f \circ \alpha$.] [9 marks]

- (4) (a) Let S be an oriented n-surface with orientation \mathbf{n} . Define the Weingarten map L_p for a $p \in S$. [5 marks]
 - (b) State precisely a theorem which relates the value of the Weingarten map $L_p(\mathbf{v})$ at $\mathbf{v} \in S_p$ and the acceleration of a parametrised curve $\alpha \colon I \to S$ with velocity $\dot{\alpha}(t_0) = \mathbf{v}$. [7 marks]
 - (c) Show that all integral curves of a smooth tangent vector field **X** on S are geodesics if and only if $\nabla_{\mathbf{X}(p)}\mathbf{X}(p) \perp S_p$ for all $p \in S$. [8 marks]
- (5) The length $\ell(\alpha)$ of a parametrised curve $\alpha \colon (a,b) \to \mathbf{R}^{n+1}$ is defined to be

$$\ell(\alpha) = \int_{a}^{b} ||\dot{\alpha}(t)|| dt,$$

where $-\infty < a < b < \infty$.

- (a) For $-\infty < c < d < \infty$, suppose that $\beta = \alpha \circ h$, where $h: [c, d] \to [a, b]$ is a continuous function such that h'(t) > 0 for all $t \in (c, d)$, h(c) = a and h(d) = b. Show that $\ell(\alpha) = \ell(\beta)$.
- (b) State precisely a theorem which gives a dichotomy of unit speed global parametrisations of connected oriented plane curves. Which alternative occurs for compact plane curves? [5 marks]

(c) Let C be a connected oriented plane curve with orientation \mathbf{n} , let $\alpha\colon I\to C$ be a one-to-one unit speed parametrisation of C and let $\kappa\colon C\to \mathbf{R}$ denote curvature on C. Show that

$$(\kappa \circ \alpha)(t) = -\dot{\alpha} \cdot (\mathbf{n} \circ \alpha)\dot{}(t)$$

and use this to show that

$$\int_{a}^{b} |(\kappa \circ \alpha)(t)| dt = \ell(N \circ \alpha),$$

where a and b are the end-points of I, and $N: C \to \mathbf{S}^1 \subset \mathbf{R}^2$ is the Gauss map of C. [9 marks]